
 PTI-TD-00016
 Revision 10.1

A DocuBrain® Product By Prevo Technologies, Inc.

 https://docubrain.com/ https://prevo.com/

TM ®

DocuBrain® TechDoc
Workflow Guide

https://docubrain.com/
https://prevo.com/

 Copyright

DocuBrain® TechDoc Workflow Guide
By Prevo Technologies, Inc.

Copyright © 2021, Prevo Technologies, Inc. All rights reserved.

Published by Prevo Technologies, Inc., 1111 Keener Rd, Seymour, TN, 37865.

This guide is distributed with software that includes an end user license agreement
(EULA). This guide, as well as the software described in the EULA, is furnished under
license and may be used or copied only in accordance with the terms of the EULA.
Except as permitted by the EULA, no part of this guide may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic, mechanical,
recording, or otherwise, without the prior written permission of Prevo Technologies,
Inc. Please note that the content in this guide is protected under copyright law even if it
is not distributed with software that includes a EULA.

The authoritative end user license agreement (EULA) can be found at:
https://docubrain.com/licenses

The content of this guide is furnished for informational use only, is subject to change
without notice, and should not be construed as a commitment by Prevo Technologies,
Inc (PTI). PTI accepts no responsibility or liability for loss or damage occasioned to any
person or property through use of the material, instructions, methods, or ideas
contained herein, or acting or refraining from acting as a result of such use. PTI disclaims
all implied warrantees, including merchantability or fitness for any particular purpose.

DocuBrain and the DocuBrain logo are registered trademarks of Prevo Technologies, Inc.

https://docubrain.com/licenses

 Contents

TechDoc Workflow Guide I

Table of Contents

1. Introduction .. 1

2. Getting Started .. 2

3. Overview of Features .. 3

3.1. DocuBrain Workflow Editor ... 3

3.2. Workflow Engine .. 4

3.3. Electronic Notifications .. 5

3.4. User Task Management ... 5

3.5. Monitoring and Administration ... 5

4. DocuBrain Workflow Editor Tutorial ... 7

4.1. Layout of the User Interface .. 7

4.1.1. Toolbar .. 7

4.1.2. Left Panel .. 9

4.1.3. Right Panel .. 10

4.1.4. Status Bar .. 12

4.2. Creating a Workflow Process ... 12

4.3. Connecting to a Workflow Engine Repository ... 16

4.4. Deploying to a Workflow Engine Repository ... 18

4.5. Downloading from a Workflow Engine Repository ... 20

4.6. Multi-Process Deployments ... 24

4.7. Importing and Exporting Diagrams .. 24

4.8. Printing a Diagram ... 25

4.9. Working with Fragments ... 26

4.10. Calling TechDoc/BPMN Service Task Operations .. 27

5. BPMN 2.0 Constructs .. 30

5.1. Custom extensions ... 30

5.2. Events ... 30

5.2.1. Event Definitions ... 31

5.2.2. Timer Event Definitions .. 31

5.2.3. Error Event Definitions .. 32

5.2.4. Signal Event Definitions .. 33

 Contents

TechDoc Workflow Guide II

5.2.5. Message Event Definitions .. 35

5.2.6. Start Events ... 37

5.2.7. Timer Start Event .. 37

5.2.8. Message Start Event ... 38

5.2.9. Signal Start Events ... 39

5.2.10. Error Start Event ... 40

5.2.11. End Events ... 41

5.2.12. Error End Event ... 41

5.2.13. Terminate End Event ... 43

5.2.14. Boundary Events ... 43

5.2.15. Timer Boundary Event .. 44

5.2.16. Error Boundary Event .. 46

5.2.17. Signal Boundary Event .. 48

5.2.18. Message Boundary Event ... 49

5.2.19. Compensation Boundary Event .. 50

5.2.20. Intermediate Catching Events ... 51

5.2.21. Timer Intermediate Catching Event .. 52

5.2.22. Signal Intermediate Catching Event .. 53

5.2.23. Message Intermediate Catching Event ... 53

5.2.24. Intermediate Throwing Event ... 54

5.2.25. Signal Intermediate Throwing Event .. 54

5.2.26. Compensation Intermediate Throwing Event .. 56

5.3. Sequence Flow ... 59

5.3.1. Description .. 59

5.3.2. Graphical Notation .. 59

5.3.3. XML Representation ... 59

5.3.4. Conditional Sequence Flow ... 59

5.3.5. Default Sequence Flow ... 60

5.4. Gateways.. 61

5.4.1. Exclusive Gateway ... 62

5.4.2. Parallel Gateway ... 64

5.4.3. Inclusive Gateway ... 66

5.4.4. Event-based Gateway ... 68

 Contents

TechDoc Workflow Guide III

5.5. Tasks ... 71

5.5.1. User Task ... 71

5.5.2. Script Task ... 74

5.5.3. Service Task ... 76

5.5.4. Manual Task .. 82

5.5.5. Receive Task .. 83

5.5.6. Send Task .. 83

5.5.7. Shell Task ... 84

5.6. Sub-Processes and Call Activities ... 86

5.6.1. Sub-Process ... 86

5.6.2. Event Sub-Process ... 88

5.6.3. Call activity (subprocess) ... 92

6. TechDoc Service Task Operations ... 95

6.1. Add Access Association .. 95

6.2. Add Commenter Association ... 97

6.3. Add Distribution Association ... 98

6.4. Add Keyword .. 99

6.5. Add Notification Association ... 100

6.6. Release Document ... 101

6.7. Remove Access Association ... 102

6.8. Remove Commenter Association .. 103

6.9. Remove Distribution Association ... 105

6.10. Remove Keyword ... 106

6.11. Remove Notification Association ... 106

6.12. Replace Keyword ... 108

6.13. Reserve Document ... 108

6.14. Simple Web Request .. 109

6.15. Select Document .. 109

6.16. Send Email .. 110

6.17. Unrelease Document ... 111

6.18. Unreserve Document ... 111

7. Script Task Helper Objects .. 112

7.1. DBBase64 ... 112

 Contents

TechDoc Workflow Guide IV

7.2. DBHtmlParser ... 112

7.3. DBJsonBuilder .. 113

7.4. DBJsonParser ... 114

7.5. DBNow ... 115

7.6. DBSoapUtils .. 115

7.7. DBXmlBuilder ... 116

7.8. DBXmlParser .. 117

7.8.1. containsAttribute .. 117

7.8.2. elementToString.. 117

7.8.3. findElementByID ... 117

7.8.4. findElementByName ... 118

7.8.5. findElementsByAttributeValue ... 118

7.8.6. getRoot .. 118

7.8.7. hideNodes ... 118

7.8.8. parseAttributeValueAsBoolean .. 119

7.8.9. parseAttributeValueAsDouble .. 119

7.8.10. parseAttributeValueAsInteger .. 119

7.8.11. parseAttributeValueAsString .. 119

7.8.12. parseAttributesByPrefix .. 120

7.8.13. parseChildNode ... 120

7.8.14. parseChildNodes ... 120

7.8.15. parseTextContent ... 120

7.8.16. stripNamespace .. 121

8. The TechDoc Server-Side Workflow Engine Reference .. 122

8.1. Workflows Management Menu ... 122

8.1.1. Creating a Workflow Deployment .. 122

8.1.2. Deleting a Workflow Deployment .. 123

8.1.3. Modifying a Workflow Deployment ... 124

8.1.4. Showing a Workflow Deployment .. 125

8.1.5. Showing a Workflow Process Definition ... 126

8.1.6. Showing a Workflow Process Instance ... 128

8.1.7. Showing Workflow Activity ... 130

8.1.8. Starting a Workflow Process Instance .. 130

 Contents

TechDoc Workflow Guide V

8.1.9. Activating a Workflow Process Instance ... 131

8.1.10. Suspending a Workflow Process Instance .. 132

8.1.11. Deleting a Workflow Process Instance ... 132

8.1.12. Modifying Workflow Process Instance Variables 133

8.1.13. Creating a Workflow Process Trigger .. 134

8.1.14. Modifying a Workflow Process Trigger ... 135

8.1.15. Deleting a Workflow Process Trigger .. 137

8.1.16. Showing a Workflow Process Trigger ... 138

8.1.17. Showing a Workflow Task ... 139

8.1.18. Completing a Workflow Task .. 140

8.1.19. Claiming a Workflow Task ... 141

8.1.20. Assigning a Workflow Task ... 142

8.1.21. Unassigning a Workflow Task ... 142

8.1.22. Showing a Workflow Queued Process .. 143

8.1.23. Purging All Stalled Workflow Queued Processes .. 144

8.1.24. Restarting All Stalled Workflow Queued Processes 145

9. Suggestions and Feedback .. 147

 Contents

TechDoc Workflow Guide VI

Revision History

Revision Date Comments
10.1 05/25/2021 Initial TechDoc 10.1 Workflow Guide Release

 Introduction

TechDoc Workflow Guide 1

1. Introduction

Workflow is a term that is used to describe all of the steps, tasks, or events that occur in
a business process and the participants or organizations involved. For example, think of
an automobile manufacturer (the organization) and all of the steps involved in the
manufacturing process of a car: receiving raw materials, casting and machining parts,
assembly of the engine and transmission, construction of the chassis, etc. Though
complex, every process can be broken down to individual steps.

In order to notate a process, each step must be identified along with the requirements
and participants involved. Once a process has been identified, it can be modeled. The
most widely used and accepted method of describing a workflow process is Business
Process Model and Notation (commonly referred to as BPMN). Using BPMN (usually
through a graphical design tool such as the DocuBrain® Workflow Editor), an individual
can map out each step of a process from start to end. Once the process has been
modeled using BPMN, it can be uploaded to a workflow engine and executed.

TechDoc features a vast set of capabilities, with one of the main features being a
workflow engine. The workflow engine included in TechDoc is BPMN 2.0 compliant and
has been tightly integrated with TechDoc to provide a seamless workflow experience.
While you can design processes to be completely standalone and independent from
TechDoc, you can also perform a large array of TechDoc operations through BPMN
Service Tasks as described in the TechDoc Activities section below.

Before you dive in and start trying to build and design workflow processes, it is
necessary to become familiar with the BPMN 2.0 specification. Throughout this guide,
we will touch on small pieces of the specification and how they pertain to workflow in
TechDoc however, we will not be going into depth reiterating the BPMN 2.0
specification.

 Getting Started

TechDoc Workflow Guide 2

2. Getting Started

This guide contains the information you need to understand to design, build, and
manage workflow processes within DocuBrain products. Starting from the ground up,
we will cover from the fundamentals of process design to deployment and execution on
the TechDoc workflow engine.

• Overview of Features – Provides a high-level overview of the features and
capabilities.

• DocuBrain Workflow Editor Tutorial – A tutorial detailing the use of the
DocuBrain Workflow Editor.

• TechDoc Service Task Operations – Covers the TechDoc specific operations that
are available for use via Service Tasks in a workflow process.

• The TechDoc Workflow Engine – Overview of the TechDoc workflow engine and
how to interact with it.

 Overview of Features

TechDoc Workflow Guide 3

3. Overview of Features

DocuBrain TechDoc features a complete workflow management system. From process
design to execution and management, we have you covered. In today's every changing
business world, business process automation is invaluable. Using DocuBrain TechDoc,
you can leverage all the benefits of electronic document and records management while
streamlining all of your business processes. Integration of electronic document
management and business process automation has never been easier.

3.1. DocuBrain Workflow Editor

The DocuBrain Workflow Editor is an easy to use and intuitive workflow process editor.
It allows users the ability to graphically model business processes following the BPMN
standard and deploy them directly to a TechDoc workflow engine. The DocuBrain
Workflow Editor can be used in conjunction with TechDoc or used on its own to create
generic BPMN 2.0 workflow processes. The DocuBrain Workflow Editor features:

• Drag and drop modeling

• BPMN 2.0 compliant

• Code free process design

• Customizable look & feel

• Connects to TechDoc Document Managers

• Multi-diagram deployments

• Collaborative process modeling

• Process repository

• Process versioning

• BPMN fragments/snippets

• Form editing

• Process deployment

• Model validation

 Overview of Features

TechDoc Workflow Guide 4

• Diagram printing

3.2. Workflow Engine

The TechDoc workflow engine is an extremely fast and lightweight Business Process
Management (BPM) Platform. The process engine is BPMN 2.0 compliant and fully
integrated with TechDoc. Alongside all of the abilities of BPMN 2.0, an extensive set of
TechDoc operations are also available for use via BPMN Service Tasks. In addition,
workflow processes can be triggered to execute based on different events in a TechDoc
Document Manager such as the creation, modification, or deletion of a document. Here
a just a few features of the TechDoc workflow engine:

• Completely web-based, accessible from anywhere

• Process administration and management dashboard

• Real time monitoring with graphical view of workflow process and process
variable inspector

• User task integration with TechDoc Users and Groups

• Email-based notification and alerts

• Direct launch of user task completion from email notification

• Process versioning

• Centralized exception handling

• Inter-process communications

• Parallel activities (forking and joining)

• Long running workflows (months or more)

• Sub-process and task looping

• Expression evaluation using Unified Expression Language (UEL)

• Escalation

• Forms support

• History logging

 Overview of Features

TechDoc Workflow Guide 5

• Reporting

3.3. Electronic Notifications

The workflow engine is fully integrated with TechDoc's email and notification system.
The engine sends email notification to users when: a process requires them to complete
a task, a process of theirs encounters a business exception or escalates, etc.
Additionally, the email notification sent contains action links to the TechDoc Document
Manager that will take the user straight to the item needing their attention. This means
you can stay connected even while on the go with your smart phone or tablet.

3.4. User Task Management

User Tasks generated by workflow processes are completely integrated with TechDoc.
User Tasks appear under the TechDoc Document Manager My Work area just like all
other TechDoc items that require a user's attention. Additionally, as mentioned in the
previous section, User Tasks also notify the user via email when a task needs to be
completed.

What happens when a User Task is encountered within a process, and the user assigned
is gone on vacation? No worries here, you can easily locate and re-assign a User Task
under the Workflows Management section in the TechDoc Document Manager.
Furthermore, User Tasks can also be un-assigned so they are made available to any
other potential owners, or can just be completed directly without the need to be re-
assigned. Flexibility is everything with User Task management.

3.5. Monitoring and Administration

Monitoring the TechDoc workflow engine could not be easier. Under the Workflows
Management section of a TechDoc Document Manager, a user with the Workflows
Management privilege can easily view all of the deployments, process definitions, and
process instances in the system as well as all User Tasks awaiting completion.

Have you ever wondered exactly what step your process instance is currently on? Many
systems simply tell you the name or ID of the element being executed and then require
you to pull up the diagram and try to locate the element yourself. In TechDoc, you can
simply click a running process instance. TechDoc features a real-time interactive process
diagram so you can see the process just as it was designed as well as the activity being
executed. However, we did not stop there. You can also click elements on the process
and view all of their metadata in a popup window. Have you ever forgotten how long of
a period you set on a timer task or the assignee of a User Task? Just click the activity and

 Overview of Features

TechDoc Workflow Guide 6

take a quick peek; no more firing up an editor and loading a diagram just to figure it out.
Additionally, when a process instance is focused on a User Task, you can just click the
User Task and you will be taken straight to that task to complete.

All of this is great for administrators, but what about normal users? All users can make
use of the real-time monitoring and interaction with the only restriction being they can
only view processes and assign/complete tasks they own.

 Workflow Editor Tutorial

TechDoc Workflow Guide 7

4. DocuBrain Workflow Editor Tutorial

In this section, we will go over all the basics of using the DocuBrain Workflow Editor. We
will not touch much on the BPMN specification, but there will be portions that go over
interaction with the BPMN elements. As the BPMN elements do differ a great deal, it is
good idea to at least be familiar with the basic elements: Start/End Events, Intermediate
Events, Boundary Events, Tasks, and Gateways.

4.1. Layout of the User Interface

The editor is split into four main areas: the Toolbar, Left Panel, Right Panel, and Status
Bar.

4.1.1. Toolbar

On the toolbar, you will find all of the menus for the editor and the short cut buttons.
The toolbar contains the following menus:

 Workflow Editor Tutorial

TechDoc Workflow Guide 8

• File – Used to open, close, and save workflow deployments as well as add,
remove, import or export diagrams from an open deployment. Additionally, this
menu can be used to print an open deployment or upload it to a workflow
repository.

• Edit – This menu is only used when a deployment is open. It contains the
undo/redo options to undo or redo an action to a diagram such as un-delete an
element. This menu also contains all of the clipboard operations: to cut, copy,
paste and delete elements from or to a diagram.

• Diagram – This menu is only used when a deployment is open. It contains all of
the properties for the currently selected diagram. This menu is also accessible by
simply right clicking on the diagram (grid paper). On this menu, you will find
options like setting the file name of the diagram, the BPMN process ID and
name, editing the XML namespaces for the diagram, etc.

• Element – This menu is only used when a deployment is open and a BPMN
element is selected on a diagram. It contains all of the properties for the
currently selected BPMN element. This menu is also accessible by simply right
clicking on an element on your diagram. On this menu you will find the
properties for the element, the ability to cut or copy the element (or selection if
more than one element is selected), and other options that vary from element to
element depending on its type.

• Tools – The Tools menu contains all of the tools and global settings for the
editor. This is where you will find the Options dialog where you can change the
target workflow engine and edit presets. You can also stylize the Diagram Editor
and XML Editor to suit your needs. Additionally, the XML Editor's theme can be
changed if needed. Note that there is a high contrast theme for those who need
it.

• Window – The Window menu contains all of the options to display the various
windows of the editor if they have been closed such as the Start Page.

• Help – The Help menu contains the About dialog that shows the editor's version
and your license info, as well as the options to check for updates to the editor
and submit feedback on the editor to the DocuBrain website.

The icons of the toolbar from left to right are shortcuts to toolbar menu items. There are
as follows:

• File-> Open Deployment

• File-> Save Deployment

 Workflow Editor Tutorial

TechDoc Workflow Guide 9

• File -> Upload Deployment

• Edit -> Cut

• Edit -> Copy

• Edit -> Paste

• Edit -> Delete

• Edit -> Undo

• Edit -> Redo

4.1.2. Left Panel

The left panel contains four tabs: Deployment, Elements, Fragments, and Repository
tab.

The Deployment tab displays the deployment that is currently open in the editor. Each
process contained in the deployment is listed here and may be opened by double
clicking it. Additionally, you can right click a process and delete it from the deployment
or right click the deployment and add a new process.

On the Elements tab, you will find all of the BPMN elements that the editor currently
supports. To drag an element onto a diagram, press and hold the left mouse button over
an element, drag it over to the diagram and release the left mouse button. This will
place the element onto the diagram; you can then proceed to make connections, size
and position the element, etc.

On the Fragments tab, you will find all of the fragments (or snippets as they are
sometimes referred to) that you have created. Fragments are not usually a full diagram,
but just a few elements connected in a particular way that you find yourself re-creating
repeatedly. We will dig deeper into fragments later on.

The Repository tab is used to connect to a TechDoc workflow engine. Once a connection
has been configured, you can select it from the dropdown box and click the connect

button to connect to the workflow engine and retrieve the list of all the workflow
deployments and processes it contains. Once the list of deployments has been

retrieved, you can select a deployment and click the download button to download
the deployment from the workflow engine (repository) and load it in the editor to view
or edit. A deployment can be deleted from the repository by selecting it from the list

and clicking the delete button . When a deployment is selected from the list, you can

 Workflow Editor Tutorial

TechDoc Workflow Guide 10

view the Definitions, Resources, and Images it contains using the tabs below the
deployment list. We will go into more detail later on about repository connections.

4.1.3. Right Panel

The right panel is the workspace of the editor. When you create or load a deployment,
all of the diagrams are loaded into the workspace. Each diagram will have a tab, and on
each tab, there are two main sections the Design view and Source view.

The design view is used to graphically layout a workflow process. Elements can be
dragged from the elements panel on the left panel to the diagram. Once an element has
been placed on the diagram, it becomes part of the workflow process. To view the
properties of the diagram, right click anywhere on the graph paper. To view the
properties of an element, right click on an element.

The design view features a both a ruler and tool bar. The ruler can be set to use inches,
metric, or pixel-based measurements. The graph paper's grid size synchronizes to the
ruler's settings and is very helpful when placing and aligning elements. The toolbar
contains various buttons and settings, see the image below for a description of each:

 Workflow Editor Tutorial

TechDoc Workflow Guide 11

The source view is used to examine the XML BPMN code generated by building the
diagram in design mode. The source view is used purely for reference and cannot be
used to alter or manually code BPMN. This view also contains a toolbar; see the image
below for a description of each control:

 Workflow Editor Tutorial

TechDoc Workflow Guide 12

4.1.4. Status Bar

The status bar is the bottom bar of the editor. It is used to display status messages when
the editor is busy doing things such as saving or loading a deployment, retrieving a list of
deployments from a repository, etc. The status bar can be very useful to watch the
progress of action that can take just a bit to complete. For example, if you are
connecting to a workflow repository over a slower internet connection that contains
many deployments, it could take several seconds to a minute.

4.2. Creating a Workflow Process

In this section, we will cover what you need to know to construct a basic workflow
process. Start by launching the editor and selecting "New Deployment" from the File
menu, or by clicking "Create a new deployment" on the Start Page. You will then be
presented with a new deployment containing just one diagram.

When creating a new process, you must always start by giving the diagram a file name,
and then name the process. Right click on the diagram (the graph paper), and then click

 Workflow Editor Tutorial

TechDoc Workflow Guide 13

Diagram Properties under Diagram. On the Diagram Properties dialog, enter the
filename to use for the diagram and then click OK.

Now right click on the diagram, and then click Process Properties under Diagram. On the
Process Properties dialog, you will want to give the process its name and ID; this is a
very important step. Later on, when you deploy this process to a workflow engine, it will
be very hard to identify your process if it does not have a unique name. Additionally, if
you upload a process with a name or ID that is already being used by another process,
many workflow engines will assume this is a new version of the original process and may
begin using it for unintended purposes. After you have given the process a name and ID,
click the OK button.

Now we have a named diagram file and process. Let us begin by dragging a Start Event
from the elements panel on the Left Panel onto the diagram.

Notice when we drag the element around on the diagram, there is a red alignment line
extending from the center of the element towards the ruler. These alignment lines can
be used to make sure we place the elements exactly where we want it. If you prefer,
you can click the corner align button (blue alignment line) from the upper toolbar so
that you may align the element using its upper left corner.

Now that we have placed a Start Event, go ahead and drag a Catch Event and End Event
onto the diagram as well. In order for a workflow engine to know how to execute your
process, the elements need to be connected in the order in which they should execute

 Workflow Editor Tutorial

TechDoc Workflow Guide 14

beginning with the Start Event. Let us begin by connecting the Start Event to the Catch
Event. To do this, click on the center Start Event to show its actions:

Once the actions appear, click and hold the left mouse button over the connection
arrow. Now drag the red connection line over the center of the Catch Event and release
the left mouse button to make the connection. This will make a Sequence Flow
connection from the Start Event to the Catch Event. The order in which you make
connections is important. Notice how the arrow on the line points to the Catch Event.
This means the connection is sourcing from the Start Event and targeting the Catch
Event. If we had done this backwards, the connection would be starting from the Catch
Event and ending on the Start Event, which is not the direction that we intend for the
engine to execute our process; in fact, this is also illegal, as a Start Event cannot have an
incoming connection by the BPMN 2.0 specification.

Now that you have connected the Start Event and Catch Event, go ahead and connect
the Catch Event to the End Event. You diagram should now look like this:

 Workflow Editor Tutorial

TechDoc Workflow Guide 15

Notice the orange dots along the connection. If desired, you could left click and hold on
top of an orange dot, drag it to a new location and release the mouse button to change
the connection's path. Additionally, if you drag the first or last dot you can change the
point at which the connection leaves or enters the source or target element.

Now we have a complete BPMN process. By the BPMN specification, to have a complete
process, you must have a Start Event and an End Event. While this process would
execute on a workflow engine, it would be near impossible to catch while it is running
because as soon as you start it, it would complete because there are no operations to
perform. Let us address this by giving the Catch Event a timer definition. Right click on
the Catch Event and then click Event Definitions.

On the Element Event Definitions dialog, click the create button and then select
Timer under element defined. Select Duration as the type and enter PT1M as the
expression to say that we want a duration period of 1 minute. Click the OK button on
the Create Timer Event Definition dialog. Now on the Element Event Definitions dialog,
you can see the timer event definitions that you just created. Click the OK button to
close the Element Event Definitions dialog.

You now have a complete process that will execute and take one minute to complete.
Go ahead and save this deployment; we will need it in our next exercise. On the File

menu, click Save Deployment or click the save button on the toolbar. Find a location
on your computer to save the deployment, give it a name and click the Save button.

 Workflow Editor Tutorial

TechDoc Workflow Guide 16

You can use this deployment in the next section when we connect to a workflow
repository and upload it.

4.3. Connecting to a Workflow Engine Repository

The DocuBrain Workflow Editor has the ability to connect directly to a TechDoc
workflow engine to deploy workflow processes or download and edit existing processes.

Let's start by clicking the Repository tab on the Left Panel and then clicking the manage

connections button .

On the Manage Connections dialog, click the New button. You will now be looking at the
Create Connection dialog.

• Enter a name for the connection in the Connection Name box.

• Select the TechDoc version this connection will target.

• Enter the host name of the TechDoc instance; i.e. example.com making sure to
leave off any trailing context path.

• Enter the base URL for a TechDoc connection is always /service/workflow/ and
cannot be changed.

 Workflow Editor Tutorial

TechDoc Workflow Guide 17

• Now enter the username and password of your TechDoc user account. If you are
connecting via Single Sign On, leave both fields blank and check the "Connect
using Single Sign On" checkbox. Please remember that the editor does NOT save
your password and does not have the ability to do so. It is used here just to verify
that the editor can make a connection to the workflow engine repository.

• Next, you'll need to decide whether or not the workflow repository is using
HTTPS. If you visit the workflow engine in a web browser, you should be able to
look at the beginning of the URL to see if it starts with "http://" or "https://".

• If you are required to connect to through a Proxy server, you may enter the
proxy server and port number (if required) in the Proxy field. You should enter
something like example.com or example.com:1234. If you do not use a proxy
server, this field MUST be left blank.

• You may optionally adjust the timeout in the Timeout field. The timeout is
specified in seconds and is used for every call made to the repository. For
instance, when you go to click the OK button on this dialog the editor will call the
repository to make sure it can connect to it and retrieve its version. The version
check call will be made and then the editor will wait to 30 seconds (the default)
for the workflow repository to respond. You may adjust this field if you find the
repository is commonly timing out due to a slow internet connection or high
level of usage.

Once you have entered the settings for the connection to your repository, click the OK
button. The editor will then test your connection settings to make sure it can connect to
the repository. If your connection information is correct, the Create Connection dialog
will close and you will be looking at the Manage Connections dialog again. If you instead
encounter an error message, please read the message and verify your connection
information is correct. Click the Close button on the Manage Connections dialog.

 Workflow Editor Tutorial

TechDoc Workflow Guide 18

4.4. Deploying to a Workflow Engine Repository

In this section, we will cover uploading a deployment to a workflow engine repository.
Locate a test deployment to upload or use the deployment you created in the previous
section. To open the deployment in the editor, click Open Deployment on the File menu.
On the Open Deployment dialog, navigate to the deployment, select it and then click the
Open button. Once a deployment is open in the editor it may be uploaded to workflow
engine repository.

On the main editor window, click the Repository tab on the Left Panel and select your
connection from the Connection drop down box.

On the Repository tab, click the connect button to connect to the workflow engine
repository. When you connect, the editor will download the information for all of the
workflow deployments and processes that you have access to see. If the workflow
engine is does not yet contain a deployment, the list will be empty. Below is default
content you will see if you connect to a TechDoc workflow repository.

 Workflow Editor Tutorial

TechDoc Workflow Guide 19

Notice when you click a deployment listed in the Deployments section, you can view the
process definitions it contains on the Definitions tab below it. You may also view all of
the resources in the deployment; typically, this list will contain all of the bpmn20.xml
files, all of the thumbnails for each process (usually PNG files) and any other
miscellaneous resource files the deployment might contain. Additionally, you can click
the Images tab and view the thumbnails of the processes if the "Load deployment
previews" checkbox is selected.

 Workflow Editor Tutorial

TechDoc Workflow Guide 20

Now that we have connected to the TechDoc repository, let’s upload our deployment.
To do this, simply make sure your deployment is loaded in the editor and then click the

upload button on the main toolbar or select Upload Deployment from the File menu.
The editor will then ask you a few questions to make sure you are uploading to the
repository that you mean to and ask you for a name for the deployment (the package as
a whole; the name of the BAR file). Once you have answered these questions, the editor
will upload your deployment on the workflow engine. You will notice that the editor
then calls the workflow repository and refreshes the list of Deployments. If everything
went smoothly and your deployment contained one or more legal BPMN processes, you
should see your deployment in the list. If you encounter an error while uploading your
deployment, you likely have an error with one of your processes. You will need to read
the error message and correct the issue before the deployment can be completed.

4.5. Downloading from a Workflow Engine Repository

The DocuBrain Workflow Editor allows you not just to upload to a workflow engine
repository but also download a deployment, edit it and then upload it back. In order to
download from a repository, you must have first created a connection to that workflow
repository. If you have not done this, refer to the previous section Connecting to a
Workflow Engine Repository.

First, we need to connect to the repository that we wish to download from. Click the
Repository tab on the Left Panel, select a connection and then click the connect button

. After the editor connects to the repository, it will return a list of the deployments in
the repository that you have access to. On the Deployments list, select the deployment

that you wish to download and then double click it or click the download button .

 Workflow Editor Tutorial

TechDoc Workflow Guide 21

Once the deployment download has completed, it will be loaded into the editor where
you can then edit any of the diagrams it contains. For this example, we will use our
example deployment that we created in a previous section. We've downloaded the
deployment back from TechDoc and we've moved the elements around so that they are
now oriented vertically.

 Workflow Editor Tutorial

TechDoc Workflow Guide 22

We have completed the changes we wanted to make, so we have gone ahead and saved
it locally. You do not have to save a deployment locally that you have downloaded and
modified from a repository. You are free to pull down deployments, make changes, and
then send them right back. You will notice that the original name of the deployment was
"New Deployment.bar" and the second modified version that we saved locally is named
"New Deployment1.bar". We have done this so that we can maintain both the original
and the second version locally. Now we will upload this deployment to TechDoc. We
have a couple options:

• We can delete the original deployment from the Deployments list on the Left
Panel and upload this deployment keeping the deployment name the same. This
will get rid of the old deployment and this deployment will become the new
version 1 of the deployment.

• For the second option, we can leave the original deployment untouched in the
repository and upload this deployment leaving the original version 1 and
creating this modified version as version 2.

You will have to decide what is right in your case. Some people choose to wait until all
running instances of a deployment have completed and then delete the original and
simply replace it with the new one. However, many environments do not allow for this
because they have such a large usage of workflow and cannot interrupt or have down
time. In a case like this, it is most appropriate to upload a new "version 2" of your
deployment. The workflow engine should then begin using the new version 2
deployment automatically. Over time, all of the instances of the original (version 1)
deployment should complete. After there are no more running processes, you may
delete the original so that you are left with only the new modified deployment that you
wish to keep.

For this example, we will go ahead and upload the modified example deployment
leaving the original deployment in TechDoc. Because we have not changed the name on
the process, we will end up with a version 1 (the original) and a version 2 (the modified
process). This is what you will see:

 Workflow Editor Tutorial

TechDoc Workflow Guide 23

If you look at the Deployments list on the Left Panel, you will see that we have selected
the first "New Deployment.bar". If you look at the Definitions list below it, you will see
our process name "NewProcess" with a Version number of 1.

 Workflow Editor Tutorial

TechDoc Workflow Guide 24

If you click the new deployment in the list, you'll notice that because the process
contains had the same name "NewProcess", the process has been deemed version 2.

4.6. Multi-Process Deployments

Another important feature of the DocuBrain Workflow Editor is its support for
deployments that contain more than one workflow process (diagram). While there are
few editors out there that have this ability, most workflow engines do support it. Multi-
diagram deployments are very nice when you want to package a bunch of processes
that all have something in common. For example, we package all of our TechDoc
workflow tutorial processes in a single deployment. This way a user can deploy the
single tutorial package and have access to all of the processes. Later on, when the
tutorial processes are no longer needed the single deployment can be removed.

Additional processes can be added to a deployment, by simply opening a deployment
and then selecting Add Diagram from the File menu. This will add a new empty diagram
to the currently open deployment. If needed, a diagram can be removed from a

deployment by clicking its tab, and then clicking the button on the tab or selecting
Remove Diagram from the File menu.

4.7. Importing and Exporting Diagrams

In addition to multi-process deployments, diagram can be imported or exported to and
from a deployment. Currently, the DocuBrain Workflow Editor supports importing:
.bpmn, .bpmn20.xml, and XML files. This feature is particularly handy when you want to
import individual diagrams from another deployment or import a diagram from another
editor. Please keep in mind, when importing from another editor, you may have to
make correction to a diagram once it has been imported if it contains customizations
specific to that editor or contains illegal code. Though many BPMN process editors
follow the BPMN 2.0 specification, not all editors build processes in the same manner.
Additionally, not all workflow engines support the same BPMN elements and most have
customized attributes they use that are not defined in the BPMN 2.0 specification.

With all of this in mind, you can import a diagram in your deployment by simply clicking
Import Diagram from the File menu, selecting a BPMN file, and then clicking Open. The
editor will load the BPMN file and add it as an additional diagram to your deployment.
In addition, you may export a diagram from your deployment by opening the
deployment, selecting the diagram that you wish to export and then selecting Export
Diagram from the File menu. If you encounter any issues importing or exporting
diagrams or have a need to support importing from another editor or workflow editor,
please voice this on our website using the Submit Feedback action on the Help menu.

 Workflow Editor Tutorial

TechDoc Workflow Guide 25

4.8. Printing a Diagram

The DocuBrain Workflow Editor supports printing the diagrams of a deployment. To
print a diagram, open/download a deployment and then select Print from the File menu.
Once Print Preview dialog displays, you can preview how the print out will look using the
various controls on the dialog.

Each diagram of a deployment will be shown as a separate page in the print job. You can
navigate through the pages using the buttons on the top left of the dialog. You may also
zoom the diagram in and out if needed. If you need to change the print margins or
paper size, click the Page Setup button. Additionally, the editor supports printing
different metadata about the deployment on six places on the page, if you wish to
change the title, add the date and time, etc. click the Print Options button to do so.
When you are satisfied with the preview of the print job, click the Print button to begin
the print job.

After clicking the Print button, you will see the print window that you usually see when
printing from any other application. This print window is not a part of the DocuBrain
Workflow Editor, but it generated by your operating system (Windows, Linux, Mac, etc.).
Typically, you can just click the Print/OK button to begin the print job however, if you
need to change the target printer, print quality, etc., you can do it there.

 Workflow Editor Tutorial

TechDoc Workflow Guide 26

4.9. Working with Fragments

The DocuBrain Workflow Editor also supports working with fragments (or snippets as
called by some). When you find yourself repeatedly re-creating a portion of a process,
you may want to consider creating a fragment. To create a fragment, start by creating a
new deployment. Now drag the elements on to the screen that you will need for your
fragment. Now connect everything as needed. Once you are finished building your
fragment, select "Save As Fragment" from the File menu.

Enter a name for the fragment and click Save. Consider the example above. I have a
process that runs a timer once a minute, waits for a message to be received, and then
decides whether to complete or loop back around. If I found myself repeatedly needing
this chunk to use in many workflow processes that I create, I could save quite a bit of
time creating it as a fragment so it can be reused.

A fragment can be used any time a deployment is open. Simply click the Fragments tab
on the Left Panel, then drag a fragment from the list on to your diagram like so:

 Workflow Editor Tutorial

TechDoc Workflow Guide 27

4.10. Calling TechDoc/BPMN Service Task Operations

The DocuBrain Workflow Editor supports calling Java class operations using a BPMN
Service Task. This is the most common way to perform operations that have been
specifically designed for your workflow engine. In this section, we will cover how to call
TechDoc operations (also called Activities) from a workflow process.

Let us build a simple process that releases a document in TechDoc when it executes.
Start by dragging on to the diagram and connecting a Start Event, Service Task and End
Event in that specific order. Now right click on the Service Task and then click Properties
from the popup menu. You first need to make sure that your Service Type is set to Java
Class.

 Workflow Editor Tutorial

TechDoc Workflow Guide 28

After selecting Java Class as the Service Type, click the Java Class tab. In the Service Class
drop down select Release Document. Notice the Description box displays the
parameters this Java Class uses, what they expect and whether or not they are optional.

Now click the Activiti:Fields tab. Notice that a few fields have already been filled in for
us. Go ahead and double click Revision and specify a revision. Double click Render and
specify False. After you have done this, click the OK button.

You may now save this process and upload it to the workflow engine.

Did you notice that we did not enter a DocNumber or DocID variable and we also did not
enter a GenNumber or GenID variable? If you do not specify a document identifier and a
generation identifier (when a generation is needed), the workflow engine will try to
assume the document and generation to use. For instance, say you created a trigger in
the TechDoc Document Manager that ran this workflow process every time you created

 Workflow Editor Tutorial

TechDoc Workflow Guide 29

a document with the Document Type Invoice. You then created an Invoice document in
the TechDoc Document Manager. The workflow engine would then start this workflow
process and use the document ID and generation ID of the document you just created.

Most of the time it does not make sense to explicitly set the document and generation
in a workflow process since the process would only be good for a single document and
generation. You could however use workflow variables to set them from other data in
the process. For example, you could specify DocID to be ${myVariable} to tell the
workflow engine that it should find the current value for myVariable and set DocID using
that variable.

 BPMN 2.0 Constructs

TechDoc Workflow Guide 30

5. BPMN 2.0 Constructs

This chapter covers the BPMN 2.0 constructs supported by TechDoc as well as custom
extensions to the BPMN standard.

5.1. Custom extensions

The BPMN 2.0 standard is a good thing for all parties involved. End-users don’t suffer
from a vendor lock-in that comes by depending on a proprietary solution. Due to the
BPMN 2.0 standard, the transition from such a big vendor solution towards TechDoc is
an easy and smooth path.

The downside of a standard however, is the fact that it is always the result of many
discussions and compromises between different companies (and often visions). As a
developer reading the BPMN 2.0 XML of a process definition, sometimes it feels like
certain constructs or way to do things are too cumbersome. Since TechDoc puts ease of
development as a top-priority, we introduced something called the TechDoc BPMN
extensions. These extensions are new constructs or ways to simplify certain constructs
that are not in the BPMN 2.0 specification.

Although the BPMN 2.0 specification clearly states that it was made for custom
extension, we make sure that:

The prerequisite of such a custom extension is that there always must be a simple
transformation to the standard way of doing things. So, when you decide to use a
custom extension, you don’t have to be afraid that there is no way back.

When using a custom extension, this is always clearly indicated by giving the new XML
element, attribute, etc. the docubrain: namespace prefix.

So, whether you want to use a custom extension or not, is completely up to you. Several
factors will influence this decision (graphical editor usage, company policy, etc.). We
only provide them since we believe that some points in the standard can be done
simpler or more efficient. Feel free to give us (positive and/or negative) feedback on our
extensions, or to post new ideas for custom extensions. Who knows, someday your idea
might pop up in the specification!

5.2. Events

Events are used to model something that happens during the lifetime process. Events
are always visualized as a circle. In BPMN 2.0, there exist two main event categories:
catching or throwing event.

 BPMN 2.0 Constructs

TechDoc Workflow Guide 31

Catching: when process execution arrives in the event, it will wait for a trigger to
happen. The type of trigger is defined by the inner icon or the type declaration in the
XML. Catching events are visually differentiated from a throwing event by the inner icon
that is not filled (i.e., it is white).

Throwing: when process execution arrives in the event, a trigger is fired. The type of
trigger is defined by the inner icon or the type declaration in the XML. Throwing events
are visually differentiated from a catching event by the inner icon that is filled with
black.

5.2.1. Event Definitions

Event definitions define the semantics of an event. Without an event definition, an
event "does nothing special". For instance, a start event without an event definition
does not specify what exactly starts the process. If we add an event definition to the
start event (like for instance a timer event definition) we declare what "type" of event
starts the process (in the case of a timer event definition the fact that a certain point in
time is reached).

5.2.2. Timer Event Definitions

Timer events are events which are triggered by a defined timer. They can be used as a
start event, intermediate event or boundary event. The behavior of the time event
depends on the business calendar used. Every timer event has a default business
calendar, but the business calendar can also be defined on the timer event definition.

0 <timerEventDefinition docubrain:businessCalendarName="custom">
1 ...
2 </timerEventDefinition>

Where businessCalendarName points to business calendar in process engine
configuration. When business calendar is omitted default business calendars are used.

Timer definition must have exactly one element from the following:

• timeDate: This format specifies a fixed date, in the ISO 8601 format, when
trigger will be fired. Example:

1 <timerEventDefinition>
2 <timeDate>2011-03-11T12:13:14</timeDate>
3 </timerEventDefinition>

• timeDuration: To specify how long the timer should run before it is fired, a
timeDuration can be specified as sub-element of timerEventDefinition. The

 BPMN 2.0 Constructs

TechDoc Workflow Guide 32

format used is the ISO 8601 format (as required by the BPMN 2.0 specification).
Example (interval lasting 10 days):

1 <timerEventDefinition>
2 <timeDuration>P10D</timeDuration>
3 </timerEventDefinition>

• timeCycle: Specifies a repeating interval, which can be useful for starting a
process periodically, or for sending multiple reminders for overdue user task.
The time cycle element can be in two formats. First is the format of recurring
time duration, as specified by ISO 8601 standard. Example (3 repeating intervals,
each lasting 10 hours)

There is also the possibility to specify the endDate as an optional attribute on the
timeCycle or in the end of the time expression as follows: R3/PT10H/${EndDate}.
When the endDate is reached, the application will stop creating other jobs for this
task. It accepts as value either static values ISO 8601 standard for example "2015-02-
25T16:42:11+00:00" or variables ${EndDate}

1 <timerEventDefinition>
2 <timeCycle docubrain:endDate="2015-02-

25T16:42:11+00:00">R3/PT10H</timeCycle>
3 </timerEventDefinition>

1 <timerEventDefinition>
2 <timeCycle>R3/PT10H/${EndDate}</timeCycle>
3 </timerEventDefinition>

If both are specified then the endDate specified as attribute will be used by the
system.

Currently only the BoundaryTimerEvents and CatchTimerEvent supports EndDate
functionality.

5.2.3. Error Event Definitions

Important note: a BPMN error is NOT the same as a Java exception. In fact, the two
have nothing in common. BPMN error events are a way of modeling business
exceptions. Java exceptions are handled in their own specific way.

1 <endEvent id="myErrorEndEvent">
2 <errorEventDefinition errorRef="myError" />
3 </endEvent>

 BPMN 2.0 Constructs

TechDoc Workflow Guide 33

5.2.4. Signal Event Definitions

Signal events are events which reference a named signal. A signal is an event of the
global scope (broadcast semantics) and is delivered to all active handlers (waiting
process instances/catching signal events).

A signal event definition is declared using the signalEventDefinition element. The
attribute signalRef references a signal element declared as a child element of the
definitions root element. The following is an excerpt of a process where a signal event is
thrown and caught by intermediate events.

1 <definitions... >
2 <!-- declaration of the signal -->
3 <signal id="alertSignal" name="alert" />
4
5 <process id="catchSignal">
6 <intermediateThrowEvent id="throwSignalEvent" name="Alert">
7 <!-- signal event definition -->
8 <signalEventDefinition signalRef="alertSignal" />
9 </intermediateThrowEvent>
10 ...
11 <intermediateCatchEvent id="catchSignalEvent" name="On Alert">
12 <!-- signal event definition -->
13 <signalEventDefinition signalRef="alertSignal" />
14 </intermediateCatchEvent>
15 ...
16 </process>
17 </definitions>

The signalEventDefinitions reference the same signal element.

Throwing a Signal Event

A signal can be thrown by a process instance and either received globally by all
subscribed handlers in the entire process engine or by a specific execution.

Catching a Signal Event

A signal event can be caught by an intermediate catch signal event or a signal boundary
event.

Signal event scope

 BPMN 2.0 Constructs

TechDoc Workflow Guide 34

By default, signals are broadcast process engine wide. This means that you can throw a
signal event in a process instance, and other process instances with different process
definitions can react on the occurrence of this event.

However, sometimes it is wanted to react to a signal event only within the same process
instance. A use case for example is a synchronization mechanism in the process
instance, if two or more activities are mutually exclusive.

To restrict the scope of the signal event, add the (non-BPMN 2.0 standard!) scope
attribute to the signal event definition:

1 <signal id="alertSignal" name="alert" docubrain:scope="processInstance"/>

The default value for this is attribute is "global".

Signal Event example(s)

The following is an example of two separate processes communicating using signals. The
first process is started if an insurance policy is updated or changed. After the changes
have been reviewed by a human participant, a signal event is thrown, signaling that a
policy has changed:

This event can now be caught by all process instances which are interested. The
following is an example of a process subscribing to the event.

 BPMN 2.0 Constructs

TechDoc Workflow Guide 35

Note: it is important to understand that a signal event is broadcast to all active
handlers. This means in the case of the example given above, that all instances of the
process catching the signal would receive the event. In this case this is what we want.
However, there are also situations where the broadcast behavior is unintended.
Consider the following process:

The pattern described in the process above is not supported by BPMN. The idea is that
the error thrown while performing the "do something" task is caught by the boundary
error event and would be propagated to the parallel path of execution using the signal
throw event and then interrupt the "do something in parallel" task. So far, TechDoc
would perform as expected. The signal would be propagated to the catching boundary
event and interrupt the task. However, due to the broadcast semantics of the signal, it
would also be propagated to all other process instances which have subscribed to the
signal event. In this case, this might not be what we want.

Note: the signal event does not perform any kind of correlation to a specific process
instance. On the contrary, it is broadcast to all process instances. If a signal event should
be kept local to the process, the scope attribute can be added to the signal event and
set to processInstance.

5.2.5. Message Event Definitions

Message events are events which reference a named message. A message has a name
and a payload. Unlike a signal, a message event is always directed at a single receiver.

 BPMN 2.0 Constructs

TechDoc Workflow Guide 36

A message event definition is declared using the messageEventDefinition element. The
attribute messageRef references a message element declared as a child element of the
definitions root element. The following is an excerpt of a process where two message
events are declared and referenced by a start event and an intermediate catching
message event.

1 <definitions id="definitions"
2 xmlns="http://www.omg.org/spec/BPMN/20100524/MODEL"
3 targetNamespace="Examples"
4 xmlns:tns="Examples">
5
6 <message id="newInvoice" name="newInvoiceMessage" />
7 <message id="payment" name="paymentMessage" />
8
9 <process id="invoiceProcess">
10
11 <startEvent id="messageStart" >
12 <messageEventDefinition messageRef="newInvoice" />
13 </startEvent>
14 ...
15 <intermediateCatchEvent id="paymentEvt" >
16 <messageEventDefinition messageRef="payment" />
17 </intermediateCatchEvent>
18 ...
19 </process>
20
21 </definitions>

Message Event example(s)

The following is an example of a process which can be started using two different
messages:

 BPMN 2.0 Constructs

TechDoc Workflow Guide 37

This is useful if the process needs alternative ways to react to different start events but
eventually continues in a uniform way.

5.2.6. Start Events

A start event indicates where a process starts. The type of start event (process starts on
arrival of message, on specific time intervals, etc.), defining how the process is started is
shown as a small icon in the visual representation of the event. In the XML
representation, the type is given by the declaration of a sub-element.

Start events are always catching: conceptually the event is (at any time) waiting until a
certain trigger happens.

5.2.7. Timer Start Event

Description

A timer start event is used to create a process instance at given time. It can be used
both for processes which should start only once and for processes that should start in
specific time intervals.

Note: a subprocess cannot have a timer start event.

Note: when a new version of a process with a start timer event is deployed, the job
corresponding with the previous timer will be removed. The reasoning is that normally it
is not wanted to keep automatically starting new process instances of this old version of
the process.

Graphical notation

A none start event is visualized as a circle with clock inner icon.

XML representation

The XML representation of a timer start event is the normal start event declaration, with
timer definition sub-element. Please refer to timer definitions for configuration details.

 BPMN 2.0 Constructs

TechDoc Workflow Guide 38

Example: process will start 4 times, in 5-minute intervals, starting on 11th march 2011,
12:13

1 <startEvent id="theStart">
2 <timerEventDefinition>
3 <timeCycle>R4/2011-03-11T12:13/PT5M</timeCycle>
4 </timerEventDefinition>
5 </startEvent>

Example: process will start once, on selected date

1 <startEvent id="theStart">
2 <timerEventDefinition>
3 <timeDate>2011-03-11T12:13:14</timeDate>
4 </timerEventDefinition>
5 </startEvent>

5.2.8. Message Start Event

Description

A message start event can be used to start a process instance using a named message.
This effectively allows us to select the right start event from a set of alternative start
events using the message name.

When deploying a process definition with one or more message start events, the
following considerations apply:

• The name of the message start event must be unique across a given process
definition. A process definition must not have multiple message start events with
the same name. TechDoc will throw an exception upon deployment of a process
definition with two or more message start events that reference the same
message name.

• The name of the message start event must be unique across all deployed process
definitions. TechDoc will throw an exception upon deployment of a process
definition with one or more message start events that reference a message with
the same name as a message start event already deployed by a different process
definition.

• Process versioning: Upon deployment of a new version of a process definition,
the message subscriptions of the previous version are cancelled. This is also true
for message events that are not present in the new version.

 BPMN 2.0 Constructs

TechDoc Workflow Guide 39

Graphical notation

A message start event is visualized as a circle with a message event symbol. The symbol
is unfilled, to visualize the catching (receiving) behavior.

XML representation

The XML representation of a message start event is the normal start event declaration
with a messageEventDefinition child-element:

1 <definitions id="definitions"
2 xmlns="http://www.omg.org/spec/BPMN/20100524/MODEL"
3 targetNamespace="Examples"
4 xmlns:tns="Examples">
5
6 <message id="newInvoice" name="newInvoiceMessage" />
7
8 <process id="invoiceProcess">
9
10 <startEvent id="messageStart" >
11 <messageEventDefinition messageRef="tns:newInvoice" />
12 </startEvent>
13 ...
14 </process>
15
16 </definitions>

5.2.9. Signal Start Events

Description

A signal start event can be used to start a process instance using a named signal. The
signal can be fired from within a process instance using the intermediary signal throw
event. All process definitions that have a signal start event with the same name will be
started.

Note: in both cases, it is also possible to choose between a synchronous and
asynchronous starting of the process instances.

 BPMN 2.0 Constructs

TechDoc Workflow Guide 40

The signalName that must be passed to TechDoc is the name given in the name
attribute of the signal element referenced by the signalRef attribute of the
signalEventDefinition.

Graphical notation

A signal start event is visualized as a circle with a signal event symbol. The symbol is
unfilled, to visualize the catching (receiving) behavior.

XML representation

The XML representation of a signal start event is the normal start event declaration with
a signalEventDefinition child-element:

1 <signal id="theSignal" name="The Signal" />
2
3 <process id="processWithSignalStart1">
4 <startEvent id="theStart">
5 <signalEventDefinition id="theSignalEventDefinition" signalRef="theSignal" />
6 </startEvent>
7 <sequenceFlow id="flow1" sourceRef="theStart" targetRef="theTask" />
8 <userTask id="theTask" name="Task in process A" />
9 <sequenceFlow id="flow2" sourceRef="theTask" targetRef="theEnd" />
10 <endEvent id="theEnd" />
11 </process>

5.2.10. Error Start Event

Description

An error start event can be used to trigger an Event Sub-Process. An error start event
cannot be used for starting a process instance.

Note: an error start event is always interrupting.

Graphical notation

 BPMN 2.0 Constructs

TechDoc Workflow Guide 41

An error start event is visualized as a circle with an error event symbol. The symbol is
unfilled, to visualize the catching (receiving) behavior.

XML representation

The XML representation of an error start event is the normal start event declaration
with an errorEventDefinition child-element:

1 <startEvent id="messageStart" >
2 <errorEventDefinition errorRef="someError" />
3 </startEvent>

5.2.11. End Events

An end event signifies the end (of a path) of a (sub)process. An end event is always
throwing. This means that when a process execution arrives in the end event, a result is
thrown. The type of result is depicted by the inner black icon of the event. In the XML
representation, the type is given by the declaration of a sub-element.

5.2.12. Error End Event

Description

When a process execution arrives in an error end event, the current path of execution is
ended and an error is thrown. This error can be caught by a matching intermediate
boundary error event. If there is no matching boundary error event found, an exception
will be thrown.

Graphical notation

An error end event is visualized as a typical end event (circle with thick border), with the
error icon inside. The error icon is completely black, to indicate the throwing semantics.

 BPMN 2.0 Constructs

TechDoc Workflow Guide 42

XML representation

And error end event is represented as an end event, with an errorEventDefinition child
element.

1 <endEvent id="myErrorEndEvent">
2 <errorEventDefinition errorRef="myError" />
3 </endEvent>

The errorRef attribute can reference an error element that is defined outside the
process:

1 <error id="myError" errorCode="123" />
2 ...
3 <process id="myProcess">
4 ...

The errorCode of the error will be used to find the matching catching boundary error
event. If the errorRef does not match any defined error, then the errorRef is used as a
shortcut for the errorCode. This is a Flowable specific shortcut. More concretely,
following snippets are equivalent in functionality.

1 <error id="myError" errorCode="error123" />
2 ...
3 <process id="myProcess">
4 ...
5 <endEvent id="myErrorEndEvent">
6 <errorEventDefinition errorRef="myError" />
7 </endEvent>
8 ...

is equivalent with

1 <endEvent id="myErrorEndEvent">
2 <errorEventDefinition errorRef="error123" />
3 </endEvent>

 BPMN 2.0 Constructs

TechDoc Workflow Guide 43

Note that the errorRef must comply with the BPMN 2.0 schema, and must be a valid
QName.

5.2.13. Terminate End Event

Description

When a terminate end event is reached, the current process instance or sub-process will
be terminated. Conceptually, when an execution arrives in a terminate end event, the
first scope (process or sub-process) will be determined and ended. Note that in BPMN
2.0, a sub-process can be an embedded sub-process, call activity, event sub-process or
transaction sub-process. This rule applies in general: when for example there is a multi-
instance call activity or embedded subprocess, only that instance will be ended, the
other instances and the process instance are not affected.

There is an optional attribute terminateAll that can be added. When true, regardless of
the placement of the terminate end event in the process definition and regardless of
being in a sub-process (even nested), the (root) process instance will be terminated.

Graphical notation

A cancel end event visualized as a typical end event (circle with thick outline), with a full
black circle inside.

XML representation
A terminate end event is represented as an end event, with a terminateEventDefinition
child element.

Note that the terminateAll attribute is optional (and false by default).

1 <endEvent id="myEndEvent >
2 <terminateEventDefinition

docubrain:terminateAll="true"></terminateEventDefinition>
3 </endEvent>

5.2.14. Boundary Events

Boundary events are catching events that are attached to an activity (a boundary event
can never be throwing). This means that while the activity is running, the event is
listening for a certain type of trigger. When the event is caught, the activity is
interrupted and the sequence flow going out of the event is followed.

 BPMN 2.0 Constructs

TechDoc Workflow Guide 44

All boundary events are defined in the same way:

1 <boundaryEvent id="myBoundaryEvent" attachedToRef="theActivity">
2 <XXXEventDefinition/>
3 </boundaryEvent>

A boundary event is defined with

• A unique identifier (process-wide)

• A reference to the activity to which the event is attached through the
attachedToRef attribute. Note that a boundary event is defined on the same
level as the activities to which they are attached (i.e., no inclusion of the
boundary event inside the activity).

• An XML sub-element of the form XXXEventDefinition (e.g. TimerEventDefinition,
ErrorEventDefinition, etc.) defining the type of the boundary event. See the
specific boundary event types for more details.

5.2.15. Timer Boundary Event

Description

A timer boundary event acts as a stopwatch and alarm clock. When an execution arrives
in the activity where the boundary event is attached to, a timer is started. When the
timer fires (e.g., after a specified interval), the activity is interrupted and the boundary
event is followed.

Graphical Notation

A timer boundary event is visualized as a typical boundary event (i.e., circle on the
border), with the timer icon on the inside.

 BPMN 2.0 Constructs

TechDoc Workflow Guide 45

XML Representation

A timer boundary event is defined as a regular boundary event. The specific type sub-
element is in this case a timerEventDefinition element.

1 <boundaryEvent id="escalationTimer" cancelActivity="true"
attachedToRef="firstLineSupport">

2 <timerEventDefinition>
3 <timeDuration>PT4H</timeDuration>
4 </timerEventDefinition>
5 </boundaryEvent>

Please refer to timer event definition for details on timer configuration.

In the graphical representation, the line of the circle is dotted as you can see in this
example below:

A typical use case is sending an escalation email additionally but not interrupt the
normal process flow.

Since BPMN 2.0 there is a difference between the interrupting and non-interrupting
timer event. Interrupting is the default. The non-interrupting event leads to the original
activity and is not interrupted and the activity stays there. Instead, additional executions
are created and they are sent over the outgoing transition of the event. In the XML
representation, the cancelActivity attribute is set to false:

1 <boundaryEvent id="escalationTimer" cancelActivity="false"
attachedToRef="firstLineSupport"/>

Known issue with boundary events

There is a known issue regarding concurrency when using boundary events of any type.
Currently, it is not possible to have multiple outgoing sequence flow attached to a

 BPMN 2.0 Constructs

TechDoc Workflow Guide 46

boundary event. A solution to this problem is to use one outgoing sequence flow that
goes to a parallel gateway.

5.2.16. Error Boundary Event

Description
An intermediate catching error on the boundary of an activity, or boundary error event
for short, catches errors that are thrown within the scope of the activity on which it is
defined.

Defining a boundary error event makes the most sense on an embedded subprocess, or
a call activity, as a subprocess creates a scope for all activities inside the subprocess.
Errors are thrown by error end events. Such an error will propagate its parent scopes
upwards until a scope is found on which a boundary error event is defined that matches
the error event definition.

When an error event is caught, the activity on which the boundary event is defined is
destroyed, also destroying all current executions within (e.g., concurrent activities,
nested subprocesses, etc.). Process execution continues following the outgoing
sequence flow of the boundary event.

 BPMN 2.0 Constructs

TechDoc Workflow Guide 47

Graphical notation

A boundary error event is visualized as a typical intermediate event (circle with smaller
circle inside) on the boundary, with the error icon inside. The error icon is white, to
indicate the catch semantics.

Xml representation

A boundary error event is defined as a typical boundary event:

1 <boundaryEvent id="catchError" attachedToRef="mySubProcess">
2 <errorEventDefinition errorRef="myError"/>
3 </boundaryEvent>

As with the error end event, the errorRef references an error defined outside the
process element:

1 <error id="myError" errorCode="123" />
2 ...
3 <process id="myProcess">
4 ...

The errorCode is used to match the errors that are caught:

• If errorRef is omitted, the boundary error event will catch any error event,
regardless of the errorCode of the error.

• In case an errorRef is provided and it references an existing error, the boundary
event will only catch errors with the same error code.

• In case an errorRef is provided, but no error is defined in the BPMN 2.0 file, then
the errorRef is used as errorCode (similar for with error end events).

The following example process shows how an error end event can be used. When the
'Review profitability' user task is completed by stating that not enough information is
provided, an error is thrown. When this error is caught on the boundary of the

 BPMN 2.0 Constructs

TechDoc Workflow Guide 48

subprocess, all active activities within the 'Review sales lead' subprocess are destroyed
(even if 'Review customer rating' was not yet completed), and the 'Provide additional
details' user task is created.

5.2.17. Signal Boundary Event

Description

An attached intermediate catching signal on the boundary of an activity, or boundary
signal event for short, catches signals with the same signal name as the referenced
signal definition.

Note: contrary to other events like the boundary error event, a boundary signal event
does not only catch signal events thrown from the scope it is attached to. A signal event
has global scope (broadcast semantics) meaning that the signal can be thrown from any
place, even from a different process instance.

Note: contrary to other events like an error event, a signal is not consumed if it is
caught. If you have two active signal boundary events catching the same signal event,
both boundary events are triggered, even if they are part of different process instances.

Graphical notation

A boundary signal event is visualized as a typical intermediate event (Circle with smaller
circle inside) on the boundary, with the signal icon inside. The signal icon is white
(unfilled), to indicate the catch semantics.

 BPMN 2.0 Constructs

TechDoc Workflow Guide 49

XML representation

A boundary signal event is defined as a typical boundary event:

1 <boundaryEvent id="boundary" attachedToRef="task" cancelActivity="true">
2 <signalEventDefinition signalRef="alertSignal"/>
3 </boundaryEvent>

Example

See section on signal event definitions.

5.2.18. Message Boundary Event

Description

An attached intermediate catching message on the boundary of an activity, or boundary
message event for short, catches messages with the same message name as the
referenced message definition.

Graphical notation

A boundary message event is visualized as a typical intermediate event (Circle with
smaller circle inside) on the boundary, with the message icon inside. The message icon is
white (unfilled), to indicate the catch semantics.

Note that boundary message event can be both interrupting (right hand side) and non-
interrupting (left hand side).

XML representation

 BPMN 2.0 Constructs

TechDoc Workflow Guide 50

A boundary message event is defined as a typical boundary event:

1 <boundaryEvent id="boundary" attachedToRef="task" cancelActivity="true">
2 <messageEventDefinition messageRef="newCustomerMessage"/>
3 </boundaryEvent>

Example

See section on message event definitions.

5.2.19. Compensation Boundary Event

Description

An attached intermediate catching compensation on the boundary of an activity or
compensation boundary event for short, can be used to attach a compensation handler
to an activity.

The compensation boundary event must reference a single compensation handler using
a directed association.

A compensation boundary event has a different activation policy from other boundary
events. Other boundary events, like for instance the signal boundary event, are
activated when the activity they are attached to is started. When the activity is left, they
are deactivated and the corresponding event subscription is cancelled. The
compensation boundary event is different. The compensation boundary event is
activated when the activity it is attached to completes successfully. At this point, the
corresponding subscription to the compensation events is created. The subscription is
removed either when a compensation event is triggered or when the corresponding
process instance ends. From this, it follows:

• When compensation is triggered, the compensation handler associated with the
compensation boundary event is invoked the same number of times the activity
it is attached to completed successfully.

• If a compensation boundary event is attached to an activity with multiple
instance characteristics, a compensation event subscription is created for each
instance.

• If a compensation boundary event is attached to an activity which is contained
inside a loop, a compensation event subscription is created for each time the
activity is executed.

 BPMN 2.0 Constructs

TechDoc Workflow Guide 51

• If the process instance ends, the subscriptions to compensation events are
cancelled.

Note: the compensation boundary event is not supported on embedded subprocesses.

Graphical notation

A compensation boundary event is visualized as a typical intermediate event (Circle with
smaller circle inside) on the boundary, with the compensation icon inside. The
compensation icon is white (unfilled), to indicate the catching semantics. In addition to a
compensation boundary event, the following figure shows a compensation handler
associated with the boundary event using a unidirectional association:

XML representation

A compensation boundary event is defined as a typical boundary event:

1 <boundaryEvent id="compensateBookHotelEvt" attachedToRef="bookHotel" >
2 <compensateEventDefinition />
3 </boundaryEvent>
4
5 <association associationDirection="One" id="a1"

sourceRef="compensateBookHotelEvt" targetRef="undoBookHotel" />
6
7 <serviceTask id="undoBookHotel" isForCompensation="true" docubrain:class="..."

/>

Since the compensation boundary event is activated after the activity has completed
successfully, the cancelActivity attribute is not supported.

5.2.20. Intermediate Catching Events

All intermediate catching events are defined in the same way:

1 <intermediateCatchEvent id="myIntermediateCatchEvent" >

 BPMN 2.0 Constructs

TechDoc Workflow Guide 52

2 <XXXEventDefinition/>
3 </intermediateCatchEvent>

An intermediate catching event is defined with

• A unique identifier (process-wide)

• An XML sub-element of the form XXXEventDefinition (e.g., TimerEventDefinition,
etc.) defining the type of the intermediate catching event. See the specific
catching event types for more details.

5.2.21. Timer Intermediate Catching Event

Description

A timer intermediate event acts as a stopwatch. When an execution arrives in a catching
event activity, a timer is started. When the timer fires (e.g., after a specified interval),
the sequence flow going out of the timer intermediate event is followed.

Graphical Notation

A timer intermediate event is visualized as an intermediate catching event, with the
timer icon on the inside.

XML Representation

A timer intermediate event is defined as an intermediate catching event. The specific
type sub-element in this case is a timerEventDefinition element.

1 <intermediateCatchEvent id="timer">
2 <timerEventDefinition>
3 <timeDuration>PT5M</timeDuration>
4 </timerEventDefinition>
5 </intermediateCatchEvent>

See timer event definitions for configuration details.

 BPMN 2.0 Constructs

TechDoc Workflow Guide 53

5.2.22. Signal Intermediate Catching Event

Description

An intermediate catching signal event catches signals with the same signal name as the
referenced signal definition.

Note: contrary to other events like an error event, a signal is not consumed if it is
caught. If you have two active signal boundary events catching the same signal event,
both boundary events are triggered, even if they are part of different process instances.

Graphical notation

An intermediate signal catch event is visualized as a typical intermediate event (Circle
with smaller circle inside), with the signal icon inside. The signal icon is white (unfilled),
to indicate the catch semantics.

XML representation

A signal intermediate event is defined as an intermediate catching event. The specific
type sub-element is in this case a signalEventDefinition element.

1 <intermediateCatchEvent id="signal">
2 <signalEventDefinition signalRef="newCustomerSignal" />
3 </intermediateCatchEvent>

Example

See section on signal event definitions.

5.2.23. Message Intermediate Catching Event

Description

An intermediate catching message event catches messages with a specified name.

Graphical notation

 BPMN 2.0 Constructs

TechDoc Workflow Guide 54

An intermediate catching message event is visualized as a typical intermediate event
(Circle with smaller circle inside), with the message icon inside. The message icon is
white (unfilled), to indicate the catch semantics.

XML representation

A message intermediate event is defined as an intermediate catching event. The specific
type sub-element is in this case a messageEventDefinition element.

1 <intermediateCatchEvent id="message">
2 <messageEventDefinition signalRef="newCustomerMessage" />
3 </intermediateCatchEvent>

Example

See section on message event definitions.

5.2.24. Intermediate Throwing Event

All intermediate throwing events are defined in the same way:

1 <intermediateThrowEvent id="myIntermediateThrowEvent" >
2 <XXXEventDefinition/>
3 </intermediateThrowEvent>

An intermediate throwing event is defined with:

• A unique identifier (process-wide)

• An XML sub-element of the form XXXEventDefinition (e.g., signalEventDefinition,
etc.) defining the type of the intermediate throwing event. See the specific
throwing event types for more details.

5.2.25. Signal Intermediate Throwing Event

Description

An intermediate throwing signal event throws a signal event for a defined signal.

 BPMN 2.0 Constructs

TechDoc Workflow Guide 55

In TechDoc, the signal is broadcast to all active handlers (i.e., all catching signal events).
Signals can be published synchronous or asynchronous.

In the default configuration, the signal is delivered synchronously. This means that the
throwing process instance waits until the signal is delivered to all catching process
instances. The catching process instances are also notified in the same transaction as
the throwing process instance, which means that if one of the notified instances
produces a technical error (throws an exception), all involved instances fail.

A signal can also be delivered asynchronously. In that case it is determined which
handlers are active at the time the throwing signal event is reached. For each active
handler, an asynchronous notification message (Job) is stored and delivered by the
JobExecutor.

Graphical notation

An intermediate signal throw event is visualized as a typical intermediate event (Circle
with smaller circle inside), with the signal icon inside. The signal icon is black (filled), to
indicate the throw semantics.

XML representation

A signal intermediate event is defined as an intermediate throwing event. The specific
type sub-element is in this case a signalEventDefinition element.

1 <intermediateThrowEvent id="signal">
2 <signalEventDefinition signalRef="newCustomerSignal" />
3 </intermediateThrowEvent>

An asynchronous signal event would look like this:

1 <intermediateThrowEvent id="signal">
2 <signalEventDefinition signalRef="newCustomerSignal" activiti:async="true" />
3 </intermediateThrowEvent>

Example

See section on signal event definitions.

 BPMN 2.0 Constructs

TechDoc Workflow Guide 56

5.2.26. Compensation Intermediate Throwing Event

Description

An intermediate throwing compensation event can be used to trigger compensation.

Triggering compensation: Compensation can either be triggered for a designated
activity or for the scope which hosts the compensation event. Compensation is
performed through execution of the compensation handler associated with an activity.

• When compensation is thrown for an activity, the associated compensation
handler is executed the same number of times the activity completed
successfully.

• If compensation is thrown for the current scope, all activities within the current
scope are compensated, which includes activities on concurrent branches.

• Compensation is triggered hierarchically: if an activity to be compensated is a
subprocess, compensation is triggered for all activities contained in the
subprocess. If the subprocess has nested activities, compensation is thrown
recursively. However, compensation is not propagated to the "upper levels" of
the process: if compensation is triggered within a subprocess, it is not
propagated to activities outside of the subprocess scope. The BPMN
specification states that compensation is triggered for activities at "the same
level of subprocess".

• In TechDoc, compensation is performed in reverse order of execution. This
means that whichever activity completed last is compensated first, etc.

• The intermediate throwing compensation event can be used to compensate
transaction subprocesses which completed successfully.

Note: If compensation is thrown within a scope which contains a subprocess and the
subprocess contains activities with compensation handlers, compensation is only
propagated to the subprocess if it has completed successfully when compensation is
thrown. If some of the activities nested inside the subprocess have completed and have
attached compensation handlers, the compensation handlers are not executed if the
subprocess containing these activities is not completed yet. Consider the following
example:

 BPMN 2.0 Constructs

TechDoc Workflow Guide 57

In this process we have two concurrent executions, one executing the embedded
subprocess and one executing the "charge credit card" activity. Let’s assume both
executions are started and the first concurrent execution is waiting for a user to
complete the "review bookings" task. The second execution performs the "charge credit
card" activity and an error is thrown, which causes the "cancel reservations" event to
trigger compensation. At this point the parallel subprocess is not yet completed which
means that the compensation event is not propagated to the subprocess and thus the
"cancel hotel reservation" compensation handler is not executed. If the user task (and
thus the embedded subprocess) completes before the "cancel reservations" is
performed, compensation is propagated to the embedded subprocess.

Process variables: When compensating an embedded subprocess, the execution used
for executing the compensation handlers has access to the local process variables of the
subprocess in the state they were in when the subprocess completed execution. To
achieve this, a snapshot of the process variables associated with the scope execution
(execution created for executing the subprocess) is taken. Form this, a couple of
implications follow:

• The compensation handler does not have access to variables added to
concurrent executions created inside the subprocess scope.

• Process variables associated with executions higher up in the hierarchy, (for
instance process variables associated with the process instance execution are
not contained in the snapshot: the compensation handler has access to these
process variables in the state they are in when compensation is thrown.

 BPMN 2.0 Constructs

TechDoc Workflow Guide 58

• A variable snapshot is only taken for embedded subprocesses, not for other
activities.

Current limitations:

• waitForCompletion="false" is currently unsupported. When compensation is
triggered using the intermediate throwing compensation event, the event is only
left, after compensation completed successfully.

• Compensation itself is currently performed by concurrent executions. The
concurrent executions are started in reverse order in which the compensated
activities completed. Future versions of activity might include an option to
perform compensation sequentially.

• Compensation is not propagated to sub process instances spawned by call
activities.

Graphical notation

An intermediate compensation throw event is visualized as a typical intermediate event
(Circle with smaller circle inside), with the compensation icon inside. The compensation
icon is black (filled), to indicate the throw semantics.

Xml representation

A compensation intermediate event is defined as an intermediate throwing event. The
specific type sub-element is in this case a compensateEventDefinition element.

1 <intermediateThrowEvent id="throwCompensation">
2 <compensateEventDefinition />
3 </intermediateThrowEvent>

In addition, the optional argument activityRef can be used to trigger compensation of a
specific scope / activity:

1 <intermediateThrowEvent id="throwCompensation">
2 <compensateEventDefinition activityRef="bookHotel" />
3 </intermediateThrowEvent>

 BPMN 2.0 Constructs

TechDoc Workflow Guide 59

5.3. Sequence Flow

5.3.1. Description

A sequence flow is the connector between two elements of a process. After an element
is visited during process execution, all outgoing sequence flow will be followed. This
means that the default nature of BPMN 2.0 is to be parallel: two outgoing sequence
flows will create two separate, parallel paths of execution.

5.3.2. Graphical Notation

A sequence flow is visualized as an arrow going from the source element towards the
target element. The arrow always points towards the target.

5.3.3. XML Representation

Sequence flow need to have a process-unique id, and a reference to an existing source
and target element.

1 <sequenceFlow id="flow1" sourceRef="theStart" targetRef="theTask" />

5.3.4. Conditional Sequence Flow

Description

A sequence flow can have a condition defined on it. When a BPMN 2.0 activity is left,
the default behavior is to evaluate the conditions on the outgoing sequence flow. When
a condition evaluates to true, that outgoing sequence flow is selected. When multiple
sequence flows are selected in this way, multiple executions will be generated and the
process will be continued in a parallel manner.

Note: the above holds true for BPMN 2.0 activities (and events), but not for gateways.
Gateways will handle sequence flows with conditions in specific ways, depending on the
gateway type.

Graphical notation

 BPMN 2.0 Constructs

TechDoc Workflow Guide 60

A conditional sequence flow is visualized as a regular sequence flow, with a small
diamond at the beginning. The condition expression is shown next to the sequence flow.

XML representation

A conditional sequence flow is represented in XML as a regular sequence flow,
containing a conditionExpression sub-element. Note that for the moment only
tFormalExpressions are supported. Omitting the xsi:type="" definition will simply default
to this, the only supported type of expression.

1 <sequenceFlow id="flow" sourceRef="theStart" targetRef="theTask">
2 <conditionExpression xsi:type="tFormalExpression">
3 <![CDATA[${order.price > 100 && order.price < 250}]]>
4 </conditionExpression>
5 </sequenceFlow>

Currently conditionalExpressions can only be used with UEL; detailed info about these
can be found in section Expressions. The expression used should resolve to a Boolean
value, otherwise an exception is thrown while evaluating the condition.

• The example below references data of a process variable, in the typical JavaBean
style through getters.

1 <conditionExpression xsi:type="tFormalExpression">
2 <![CDATA[${order.price > 100 && order.price < 250}]]>
3 </conditionExpression>

• This example invokes a method that resolves to a Boolean value.

1 <conditionExpression xsi:type="tFormalExpression">
2 <![CDATA[${order.isStandardOrder()}]]>
3 </conditionExpression>

5.3.5. Default Sequence Flow

Description

 BPMN 2.0 Constructs

TechDoc Workflow Guide 61

All BPMN 2.0 tasks and gateways can have a default sequence flow. A default sequence
flow is only selected as the outgoing sequence flow for an activity if none of the other
sequence flow could be selected. Conditions on a default sequence flow are always
ignored.

Graphical notation

A default sequence flow is visualized as a regular sequence flow, with a slash marker at
the beginning.

XML representation

A default sequence flow for a certain activity is defined by the default attribute on that
activity. The following XML snippet shows an example of an exclusive gateway that has
the default sequence flow “flow 2”. Only when conditionA and conditionB both evaluate
to false, will it be chosen as the outgoing sequence flow for the gateway.

4 <exclusiveGateway id="exclusiveGw" name="Exclusive Gateway" default="flow2" />
5 <sequenceFlow id="flow1" sourceRef="exclusiveGw" targetRef="task1">
6 <conditionExpression

xsi:type="tFormalExpression">${conditionA}</conditionExpression>
7 </sequenceFlow>
8 <sequenceFlow id="flow2" sourceRef="exclusiveGw" targetRef="task2"/>
9 <sequenceFlow id="flow3" sourceRef="exclusiveGw" targetRef="task3">
10 <conditionExpression

xsi:type="tFormalExpression">${conditionB}</conditionExpression>
11 </sequenceFlow>

5.4. Gateways

A gateway is used to control the flow of execution (or as the BPMN 2.0 specification
describes, the tokens of execution). A gateway is capable of consuming or generating
tokens.

A gateway is graphically visualized as a diamond shape with an icon inside. The icon
shows the type of gateway.

 BPMN 2.0 Constructs

TechDoc Workflow Guide 62

5.4.1. Exclusive Gateway

Description

An exclusive gateway (also called the XOR gateway or more technically the exclusive
data-based gateway) is used to model a decision in the process. When the execution
arrives at this gateway, all outgoing sequence flow are evaluated in the order in which
they are defined. The sequence flow with a condition evaluates to true (or which
doesn’t have a condition set, conceptually having a 'true' defined on the sequence flow)
is selected for continuing the process.

Note that the semantics of outgoing sequence flows is different to that of the general
case in BPMN 2.0. While in general, all sequence flows with a condition that evaluates to
true, are selected to continue in a parallel way. Only one sequence flow is selected
when using an exclusive gateway. In the case of multiple sequence flows have a
condition that evaluates to true, the first one defined in the XML (and only that one!) is
selected for continuing the process. If no sequence flow can be selected, an exception
will be thrown.

Graphical notation

An exclusive gateway is visualized as a typical gateway (i.e., a diamond shape) with an X
icon inside, referring to the XOR semantics. Note that a gateway without an icon inside
defaults to an exclusive gateway. The BPMN 2.0 specification does not allow mixing the
diamond with and without an X in the same process definition.

XML representation

 BPMN 2.0 Constructs

TechDoc Workflow Guide 63

The XML representation of an exclusive gateway is straight-forward: one line defining
the gateway and condition expressions defined on the outgoing sequence flows. See the
section on conditional sequence flows to see which options are available for such
expressions.

Take for example the following model:

Which is represented in XML as follows:

1 <exclusiveGateway id="exclusiveGw" name="Exclusive Gateway" />
2
3 <sequenceFlow id="flow2" sourceRef="exclusiveGw" targetRef="theTask1">
4 <conditionExpression xsi:type="tFormalExpression">${input ==

1}</conditionExpression>
5 </sequenceFlow>
6
7 <sequenceFlow id="flow3" sourceRef="exclusiveGw" targetRef="theTask2">
8 <conditionExpression xsi:type="tFormalExpression">${input ==

2}</conditionExpression>
9 </sequenceFlow>
10
11 <sequenceFlow id="flow4" sourceRef="exclusiveGw" targetRef="theTask3">
12 <conditionExpression xsi:type="tFormalExpression">${input ==

3}</conditionExpression>
13 </sequenceFlow>

 BPMN 2.0 Constructs

TechDoc Workflow Guide 64

5.4.2. Parallel Gateway

Description

Gateways can also be used to model concurrency in a process. The most straightforward
gateway to introduce concurrency in a process model is the Parallel Gateway. Parallel
Gateways allow a process to fork into multiple paths of execution or join multiple
incoming paths of execution.

The functionality of the parallel gateway is based on the incoming and outgoing
sequence flows:

• fork: all outgoing sequence flows are followed in parallel, creating one
concurrent execution for each sequence flow.

• join: all concurrent executions arriving at the parallel gateway wait in the
gateway until an execution has arrived for each of the incoming sequence flow.
After each incoming flow has arrived, the process then continues past the joining
gateway.

Note that a parallel gateway can have both forking and joining behavior if there are
multiple incoming and outgoing sequence flows for the same parallel gateway. In this
case, the gateway will first join all incoming sequence flow before splitting into multiple
concurrent paths of executions.

An important difference in contrast with other gateway types is that the parallel
gateway does not evaluate conditions. If conditions are defined on the sequence flow
connected with the parallel gateway, they are simply ignored.

Graphical Notation

A parallel gateway is visualized as a gateway (diamond shape) with the plus symbol
inside referring to the AND semantics.

XML representation

 BPMN 2.0 Constructs

TechDoc Workflow Guide 65

Defining a parallel gateway needs one line of XML:

1 <parallelGateway id="myParallelGateway" />

The actual behavior (forking, joining or both), is defined by the sequence flow
connected to the parallel gateway.

For example, the model above comes down to the following XML:

1 <startEvent id="theStart" />
2 <sequenceFlow id="flow1" sourceRef="theStart" targetRef="fork" />
3
4 <parallelGateway id="fork" />
5 <sequenceFlow sourceRef="fork" targetRef="receivePayment" />
6 <sequenceFlow sourceRef="fork" targetRef="shipOrder" />
7
8 <userTask id="receivePayment" name="Receive Payment" />
9 <sequenceFlow sourceRef="receivePayment" targetRef="join" />
10
11 <userTask id="shipOrder" name="Ship Order" />
12 <sequenceFlow sourceRef="shipOrder" targetRef="join" />
13
14 <parallelGateway id="join" />
15 <sequenceFlow sourceRef="join" targetRef="archiveOrder" />
16
17 <userTask id="archiveOrder" name="Archive Order" />
18 <sequenceFlow sourceRef="archiveOrder" targetRef="theEnd" />
19
20 <endEvent id="theEnd" />

Note that a parallel gateway does not need to be balanced (i.e., a matching number of
incoming/outgoing sequence flow for corresponding parallel gateways). A parallel
gateway will simply wait for all incoming sequence flows and create a concurrent path
of execution for each outgoing sequence flow, not influenced by other constructs in the
process model. So, the following process is legal in BPMN 2.0:

 BPMN 2.0 Constructs

TechDoc Workflow Guide 66

5.4.3. Inclusive Gateway

Description

The Inclusive Gateway can be seen as a combination of an exclusive and a parallel
gateway. Like an exclusive gateway you can define conditions on outgoing sequence
flows and the inclusive gateway will evaluate them. The main difference between the
two is that the inclusive gateway can take more than one sequence flow, like the
parallel gateway.

The functionality of the inclusive gateway is based on the incoming and outgoing
sequence flows:

• fork: all outgoing sequence flow conditions are evaluated and for the sequence
flow conditions that evaluate to true the flows are followed in parallel, creating
one concurrent execution for each sequence flow.

• join: all concurrent executions arriving at the inclusive gateway wait in the
gateway until an execution has arrived for each of the incoming sequence flows
that have a process token. This is an important difference with the parallel
gateway. So, in other words, the inclusive gateway will only wait for the
incoming sequence flows that will be executed. After the join, the process
continues past the joining inclusive gateway.

Note that an inclusive gateway can have both forking and joining behavior, if there are
multiple incoming and outgoing sequence flows for the same inclusive gateway. In this
case, the gateway will first join all incoming sequence flows that have a process token

 BPMN 2.0 Constructs

TechDoc Workflow Guide 67

before splitting into multiple concurrent paths of executions for the outgoing sequence
flows that have a condition that evaluates to true.

Graphical Notation

An inclusive gateway is visualized as a gateway (diamond shape) with the circle symbol
inside.

XML representation

Defining an inclusive gateway needs one line of XML:

1 <inclusiveGateway id="myInclusiveGateway" />

The actual behavior (forking, joining or both), is defined by the sequence flows
connected to the inclusive gateway.

For example, the model above comes down to the following XML:

1 <startEvent id="theStart" />
2 <sequenceFlow id="flow1" sourceRef="theStart" targetRef="fork" />
3
4 <inclusiveGateway id="fork" />
5 <sequenceFlow sourceRef="fork" targetRef="receivePayment" >
6 <conditionExpression xsi:type="tFormalExpression">${paymentReceived ==

false}</conditionExpression>
7 </sequenceFlow>

 BPMN 2.0 Constructs

TechDoc Workflow Guide 68

8 <sequenceFlow sourceRef="fork" targetRef="shipOrder" >
9 <conditionExpression xsi:type="tFormalExpression">${shipOrder ==

true}</conditionExpression>
10 </sequenceFlow>
11
12 <userTask id="receivePayment" name="Receive Payment" />
13 <sequenceFlow sourceRef="receivePayment" targetRef="join" />
14
15 <userTask id="shipOrder" name="Ship Order" />
16 <sequenceFlow sourceRef="shipOrder" targetRef="join" />
17
18 <inclusiveGateway id="join" />
19 <sequenceFlow sourceRef="join" targetRef="archiveOrder" />
20
21 <userTask id="archiveOrder" name="Archive Order" />
22 <sequenceFlow sourceRef="archiveOrder" targetRef="theEnd" />
23
24 <endEvent id="theEnd" />

In the above example, after the process is started, two tasks will be created if the
process variables paymentReceived == false and shipOrder == true. In case only one of
these process variables equals to true, only one task will be created. If no condition
evaluates to true an exception is thrown. This can be prevented by specifying a default
outgoing sequence flow.

Note that an inclusive gateway does not need to be balanced (i.e., a matching number
of incoming/outgoing sequence flows for corresponding inclusive gateways). An
inclusive gateway will simply wait for all incoming sequence flows and create a
concurrent path of execution for each outgoing sequence flow, not influenced by other
constructs in the process model.

5.4.4. Event-based Gateway

Description

The Event-based Gateway allows for making decisions based on events. Each outgoing
sequence flow of the gateway needs to be connected to an intermediate catching event.
When process execution reaches an Event-based Gateway, the gateway acts like a wait
state: execution is suspended. In addition, for each outgoing sequence flow, an event
subscription is created.

Note the sequence flows running out of an Event-based Gateway are different from
ordinary sequence flows. These sequence flows are never actually "executed". On the

 BPMN 2.0 Constructs

TechDoc Workflow Guide 69

contrary, they allow the process engine to determine which events an execution arriving
at an Event-based Gateway needs to subscribe to. The following restrictions apply:

• An Event-based Gateway must have two or more outgoing sequence flows.

• An Event-based Gateway must only be connected to elements with the type
intermediateCatchEvent. (Receive Tasks after an Event-based Gateway are not
supported by TechDoc.)

• An intermediateCatchEvent connected to an Event-based Gateway must have a
single incoming sequence flow.

Graphical notation

An Event-based Gateway is visualized as a diamond shape like other BPMN gateways
with a special icon inside.

XML representation

The XML element used to define an Event-based Gateway is eventBasedGateway.

Example(s)

The following process is an example of a process with an Event-based Gateway. When
the execution arrives at the Event-based Gateway, process execution is suspended. In
addition, the process instance subscribes to the alert signal event and creates a timer
which fires after 10 minutes. This effectively causes the process engine to wait for ten
minutes for a signal event. If the signal occurs within 10 minutes, the timer is cancelled
and execution continues after the signal. If the signal is not fired, execution continues
after the timer and the signal subscription is cancelled.

 BPMN 2.0 Constructs

TechDoc Workflow Guide 70

1 <definitions id="definitions"
2 xmlns="http://www.omg.org/spec/BPMN/20100524/MODEL"
3 targetNamespace="Examples">
4
5 <signal id="alertSignal" name="alert" />
6
7 <process id="catchSignal">
8
9 <startEvent id="start" />
10
11 <sequenceFlow sourceRef="start" targetRef="gw1" />
12
13 <eventBasedGateway id="gw1" />
14
15 <sequenceFlow sourceRef="gw1" targetRef="signalEvent" />
16 <sequenceFlow sourceRef="gw1" targetRef="timerEvent" />
17
18 <intermediateCatchEvent id="signalEvent" name="Alert">
19 <signalEventDefinition signalRef="alertSignal" />
20 </intermediateCatchEvent>
21
22 <intermediateCatchEvent id="timerEvent" name="Alert">
23 <timerEventDefinition>
24 <timeDuration>PT10M</timeDuration>
25 </timerEventDefinition>
26 </intermediateCatchEvent>
27
28 <sequenceFlow sourceRef="timerEvent" targetRef="exGw1" />
29 <sequenceFlow sourceRef="signalEvent" targetRef="task" />
30
31 <userTask id="task" name="Handle alert"/>
32
33 <exclusiveGateway id="exGw1" />
34
35 <sequenceFlow sourceRef="task" targetRef="exGw1" />
36 <sequenceFlow sourceRef="exGw1" targetRef="end" />
37
38 <endEvent id="end" />
39 </process>
40 </definitions>

 BPMN 2.0 Constructs

TechDoc Workflow Guide 71

5.5. Tasks

5.5.1. User Task

Description

A user task is used to model work that needs to be done by a human actor. When the
process execution arrives at a user task, a new task is created in the task list of the
user(s) or group(s) assigned to that task.

Graphical notation

A user task is visualized as a typical task (rounded rectangle), with a small user icon in
the left upper corner.

XML representation

A user task is defined in XML as follows. The id attribute is required, the name attribute
is optional.

1 <userTask id="theTask" name="Important task" />

A user task can have also a description. In fact, any BPMN 2.0 element can have a
description. A description is defined by adding the documentation element.

1 <userTask id="theTask" name="Schedule meeting" >
2 <documentation>
3 Schedule an engineering meeting for next week with the new hire.
4 </documentation>

Due Date

Each task has a field, indicating the due date of that task. In TechDoc, there is an
extension which allows you to specify an expression in your task-definition to set the
initial due date of a task when it is created. The expression should always resolve to an
ISO8601 time-duration (e.g., PT50M) or null. For example, you could use a date that was
entered in a previous form in the process or calculated in a previous Service Task. If case
a time-duration is used, the due-date is calculated based on the current time,

 BPMN 2.0 Constructs

TechDoc Workflow Guide 72

incremented by the given period. For example, when "PT30M" is used as the dueDate,
the task is due in thirty minutes from now.

1 <userTask id="theTask" name="Important task"
docubrain:dueDate="${dateVariable}"/>

User assignment

A user task can be directly assigned to a user. This is done by defining a
humanPerformer sub element. A humanPerformer definition needs a
resourceAssignmentExpression that actually defines the user. Currently, only
formalExpressions are supported.

1 <process >
2
3 ...
4
5 <userTask id='theTask' name='important task' >
6 <humanPerformer>
7 <resourceAssignmentExpression>
8 <formalExpression>kermit</formalExpression>
9 </resourceAssignmentExpression>
10 </humanPerformer>
11 </userTask>

Only one user can be assigned as human performer to the task. In TechDoc terminology,
this user is called the assignee and should be the user’s username. Tasks that have an
assignee are not visible in the task lists of other users or groups and may only be found
in the task list of the specified user.

Tasks can also be put in the so-called candidate task list of people. In TechDoc
terminology, this is referred to as the tasks available to claim. In this case, the
potentialOwner construct must be used. The usage is similar to the humanPerformer
construct. Do note that it is required to define for each element in the formal expression
to specify if it is a user or a group (the engine cannot guess this).

1 <process >
2
3 ...
4
5 <userTask id='theTask' name='important task' >
6 <potentialOwner>
7 <resourceAssignmentExpression>

 BPMN 2.0 Constructs

TechDoc Workflow Guide 73

8 <formalExpression>user(kermit), group(management)</formalExpression>
9 </resourceAssignmentExpression>
10 </potentialOwner>
11 </userTask>

This will retrieve all tasks where kermit is a candidate user, i.e., the formal expression
contains user(kermit). This will also retrieve all tasks that are assigned to a group where
kermit is a member of (e.g., group(management), if kermit is a member of that group.

If no specifics are given whether the given text string is a user or group, the engine
defaults to group. So, the following would be the same as when group(accountancy)
was declared.

1 <formalExpression>accountancy</formalExpression>

TechDoc extensions for task assignment

It is clear that user and group assignments are quite cumbersome for use cases where
the assignment is not complex. To avoid these complexities, custom extensions on the
user task are possible.

• assignee attribute: this custom extension allows to directly assign a user task to
a given user.

1 <userTask id="theTask" name="my task" docubrain:assignee="kermit" />

This is exactly the same as using a humanPerformer construct as defined above.

• candidateUsers attribute: this custom extension allows to make a user a
candidate for a task.

1 <userTask id="theTask" name="my task" docbrain:candidateUsers="kermit, gonzo"
/>

This is exactly the same as using a potentialOwner construct as defined above. Note that
it is not required to use the user(kermit) declaration as is the case with the potential
owner construct, since the attribute can only be used for users.

• candidateGroups attribute: this custom extension allows to make a group a
candidate for a task.

1 <userTask id="theTask" name="my task"
docubrain:candidateGroups="management, accountancy" />

 BPMN 2.0 Constructs

TechDoc Workflow Guide 74

This is exactly the same as using a potentialOwner construct as defined above. Note that
it is not required to use the group(management) declaration as is the case with the
potential owner construct, since the attribute can only be used for groups.

• candidateUsers and candidateGroups can both be defined on the same user task.

5.5.2. Script Task

Description

A script task is an automatic activity. When a process execution arrives at the script task,
the corresponding script is executed. TechDoc only supports using JavaScript within a
script task. Along with all of the fundamentals of JavaScript, TechDoc also includes a few
helper objects that add additional functionalities. These helper objects can provide
things like easy-to-use base 64 encoding, HTML parsing, JSON parsing/construction, etc.
See the Script Task Helper Objects section for more information on these.

Graphical Notation

A script task is visualized as a typical BPMN 2.0 task (rounded rectangle), with a small
script icon in the top-left corner of the rectangle.

XML representation

A script task is defined by specifying the script and the scriptFormat.

Variables in scripts

All process variables that are accessible through the execution that arrives in the script
task, can be used within the script. In the example, the script variable 'inputArray' is in
fact a process variable (an array of integers).

1 <scriptTask id="theScriptTask" name="Execute script" scriptFormat="JavaScript">
2 <script>
3 var sum = 0;

 BPMN 2.0 Constructs

TechDoc Workflow Guide 75

4 for (i in inputArray)
5 {
6 sum += I;
7 }
8 </script>
9 </scriptTask>

It’s also possible to set process variables in a script, simply by calling
execution.setVariable("variableName", variableValue). By default, no variables are
stored automatically.

Example on how to set a variable in a script:

1 <script>
2 var scriptVar = "test123";
3 execution.setVariable("myVar", scriptVar);
4 </script>

JUEL Expressions

Inside of JavaScript based script tasks, JUEL (Java Unified Expression Language)
expressions can also be used. JUEL is used as a variable substitution method to work
with dynamic values. For example:

1 <script>
2 var scriptVar = "Working on document ";
3 scriptVar += ${document};
4 execution.setVariable("myVar", scriptVar);
5 </script>

Similar to the previous code example where we set a JavaScript value into a process
variable, in this example we’ve gone a step farther and appended information about the
document the current process instance is working on by specifying the document bean
from the process variable named document. Before a script task (or any type of task) is
executed, JUEL is always called first to evaluate any JUEL expressions. JUEL expressions
are specified using the standard convention ${}. Once these expressions have been
evaluated, the resulting value is substituted in place. So, the previous example becomes:

1 <script>
2 var scriptVar = "Working on document ";
3 scriptVar += “123”;
4 execution.setVariable("myVar", scriptVar);
5 </script>

 BPMN 2.0 Constructs

TechDoc Workflow Guide 76

After JUEL has processed the entire script block, the JavaScript then executes the
JavaScript code. Alternatively, similar to execution.setVariable, execution.getVariable
may be used as well:

1 <script>
2 var scriptVar = "Working on document ";
3 scriptVar += execution.getVariable("document");
4 </script>

JUEL has other functions, but it’s main use is to provide these types of simplistic
substitutions. For more information on JUEL, please review the Java Unified Expression
Language specification.

Script results

The return value of a script task can be assigned to an already existing or to a new
process variable by specifying the process variable name as a literal value for the
'docubrain:resultVariable' attribute of a script task definition. Any existing value for a
specific process variable will be overwritten by the result value of the script execution.
When not specifying a result variable name, the script result value gets ignored.

1 <scriptTask id="theScriptTask" name="Execute script" scriptFormat="JavaScript"
docubrain:resultVariable="myVar">

2 <script>var testVar = “test”; return testVar;</script>
3 </scriptTask>

In the above example, the result of the script execution (the returned value of testVar in
this case) is set to the process variable named 'myVar' after the script completes.

5.5.3. Service Task

Description

A service task is used to invoke TechDoc-specific service task operations, call custom
built Java classes included in the TechDoc Java environment, perform basic tasks via
expressions, and call SOAP based web services.

Graphical Notation

A service task is visualized as a rounded rectangle with a small gear icon in the top-left
corner.

 BPMN 2.0 Constructs

TechDoc Workflow Guide 77

XML representation

There are 4 ways of declaring different usages of a service task:

• Specifying a class that implements JavaDelegate or ActivityBehavior

• Evaluating an expression that resolves to a delegation object

• Invoking a method expression or evaluating a value expression

• Calling web services

Java Delegate

To specify a class that is called during process execution, the fully qualified classname
needs to be provided by the docubrain:class attribute.

1 <serviceTask id="javaService" name="My Java Service Task"
docubrain:class="wm.activity.ReserveDocument" >

2 <docubrain:field name="DocNumber">
3 <docubrain:expression><![CDATA[123]]></docubrain:expression>
4 </docubrain:field>
5 <docubrain:field name="GenNumber">
6 <docubrain:expression><![CDATA[1.0]]></docubrain:expression>
7 </docubrain:field>
8 <docubrain:field name="Reason">
9 <docubrain:expression><![CDATA[Reserved document via

workflow.]]></docubrain:expression>
10 </docubrain:field>
11 </extensionElements>
12 </serviceTask>

In the example above, a TechDoc activity is being called to reserve a document with the
document number “123”. See the TechDoc Service Task Operations section for more
information on all of the TechDoc operations that can be performed from a service task.
As mentioned above, custom classes can be developed and used in the same fashion to
perform customer-specific tasks. For more information on custom development, please

 BPMN 2.0 Constructs

TechDoc Workflow Guide 78

contact us using the information at the bottom of this document or by visiting
docubrain.com.

Delegate Expression

Delegate expressions are very similar to referencing Java delegates as we did in the
previous example. In the previous example, we referenced the Java class to call by
specifying the full name of the class. However, it is also possible to call Java delegates
that have been injected into a process as a variable by using the syntax:

1 <serviceTask id="serviceTask"
docubrain:delegateExpression="${delegateExpressionBean}" />

The ${} syntax being used here is JUEL (Java Unified Expression Language). In this
example, instead of referencing the class directly by name, we are referencing an
instance of the class that has been injected into the process as an object using the
process variable name “delegateExpressionBean”. Currently, all of the available TechDoc
Service Task operations are only available using the docubrain:class attribute as stated
in the previous example. However, as mentioned previously, custom code can be
developed and included so that it may be referenced in this manner. For instance, if a
Java delegate needed custom initialization that was specific to each process instance,
this initialization could be performed prior to a process starting and then injected in the
process as a variable for later use by a delegate expression.

Typically, delegate expressions are only used when needed (as mentioned in the
example of needing process specific initialization) because they introduce additional
process variables, use additional process storage (to store the object itself), etc.

Expressions

Method expressions can also be used within a service task and the usage is very similar
to that of Script Task:

1 <serviceTask id="javaService"
2 name="My Java Service Task"
3 docubrain:expression="#{printer.printMessage()}" />

Method printMessage (without parameters) will be called on the named object called
printer. However, instead of using the typical JUEL syntax, a simpler syntax is used #{}
called UEL (Unified Expression Language). This syntax has less capabilities than the full
JUEL engine and is setup specifically for calling a single method on an already existing
object stored in a variable on a process. In the example above, a Java delegate instance
stored under the process variable printer is being referenced and its printMessage

 BPMN 2.0 Constructs

TechDoc Workflow Guide 79

method is being called. Since TechDoc does not make heavy use of delegate
expressions, method expressions are not commonly used either.

It’s also possible to pass parameters with a method used in the expression.

1 <serviceTask id="javaService"
2 name="My Java Service Task"
3 docubrain:expression="#{printer.printMessage(execution, myVar)}" />

Method printMessage will be called on the object named printer. The first parameter
passed is the DelegateExecution, which is available in the expression context by default
available as execution. The second parameter passed, is the value of the variable with
name myVar in the current execution.

To specify a UEL value expression that should be evaluated, use attribute
docubrain:expression.

4 <serviceTask id="javaService"
5 name="My Java Service Task"
6 docubrain:expression="#{split.ready}" />

The getter method of property ready, will be called on the named bean called split. The
named objects are resolved in the execution’s process variables.

Web Services

Web services may also be called via service tasks. To use a web service, we need to
import its operations and complex types. This can be done automatically by using the
import tag pointing to the WSDL of the Web service:

1 <import importType="http://schemas.xmlsoap.org/wsdl/"
2 location="http://localhost:1234/counter?wsdl"
3 namespace="http://webservice.example.org/" />

The previous declaration tells TechDoc to import the definitions but it doesn’t create the
item definitions and messages for you. Let’s suppose we want to invoke a specific
method called prettyPrint, therefore we will need to create the corresponding message
and item definitions for the request and response messages:

4 <message id="prettyPrintCountRequestMessage"
itemRef="tns:prettyPrintCountRequestItem" />

5 <message id="prettyPrintCountResponseMessage"
itemRef="tns:prettyPrintCountResponseItem" />

 BPMN 2.0 Constructs

TechDoc Workflow Guide 80

6
7 <itemDefinition id="prettyPrintCountRequestItem"

structureRef="counter:prettyPrintCount" />
8 <itemDefinition id="prettyPrintCountResponseItem"

structureRef="counter:prettyPrintCountResponse" />

Before declaring the service task, we have to define the BPMN interfaces and operations
that actually reference the Web service ones. For each operation we reuse the previous
defined message for in and out. For example, the following declaration defines the
counter interface and the prettyPrintCountOperation operation:

1 <interface name="Counter Interface" implementationRef="counter:Counter">
2 <operation id="prettyPrintCountOperation" name="prettyPrintCount Operation"
3 implementationRef="counter:prettyPrintCount">
4 <inMessageRef>tns:prettyPrintCountRequestMessage</inMessageRef>
5 <outMessageRef>tns:prettyPrintCountResponseMessage</outMessageRef>
6 </operation>
7 </interface>

Then we can declare a Web Service Task by using the ##WebService implementation
and a reference to the Web service operation.

1 <serviceTask id="webService"
2 name="Web service invocation"
3 implementation="##WebService"
4 operationRef="tns:prettyPrintCountOperation">

Web Service Task IO Specification

Unless we are using the simplistic approach for data input and output associations (See
below), each Web Service Task needs to declare an IO Specification which states which
are the inputs and outputs of the task. The approach is pretty straightforward and
BPMN 2.0 complaint, for our prettyPrint example we define the input and output sets
according to the previously declared item definitions:

1 <ioSpecification>
2 <dataInput itemSubjectRef="tns:prettyPrintCountRequestItem"

id="dataInputOfServiceTask" />
3 <dataOutput itemSubjectRef="tns:prettyPrintCountResponseItem"

id="dataOutputOfServiceTask" />
4 <inputSet>
5 <dataInputRefs>dataInputOfServiceTask</dataInputRefs>
6 </inputSet>

 BPMN 2.0 Constructs

TechDoc Workflow Guide 81

7 <outputSet>
8 <dataOutputRefs>dataOutputOfServiceTask</dataOutputRefs>
9 </outputSet>
10 </ioSpecification>

Web Service Task data input associations

There are 2 ways of specifying data input associations:

• Using expressions

• Using the simplistic approach

To specify the data input association using expressions we need to define the source
and target items and specify the corresponding assignments between the fields of each
item. In the following example we assign prefix and suffix fields of the items:

1 <dataInputAssociation>
2 <sourceRef>dataInputOfProcess</sourceRef>
3 <targetRef>dataInputOfServiceTask</targetRef>
4 <assignment>
5 <from>${dataInputOfProcess.prefix}</from>
6 <to>${dataInputOfServiceTask.prefix}</to>
7 </assignment>
8 <assignment>
9 <from>${dataInputOfProcess.suffix}</from>
10 <to>${dataInputOfServiceTask.suffix}</to>
11 </assignment>
12 </dataInputAssociation>

On the other hand, we can use the simplistic approach which is much simpler. The
sourceRef element is a TechDoc variable name and the targetRef element is a property
of the item definition. In the following example we assign to the prefix field the value of
the variable PrefixVariable and to the suffix field the value of the variable SuffixVariable.

1 <dataInputAssociation>
2 <sourceRef>PrefixVariable</sourceRef>
3 <targetRef>prefix</targetRef>
4 </dataInputAssociation>
5 <dataInputAssociation>
6 <sourceRef>SuffixVariable</sourceRef>
7 <targetRef>suffix</targetRef>
8 </dataInputAssociation>

 BPMN 2.0 Constructs

TechDoc Workflow Guide 82

Web Service Task data output associations

There are 2 ways of specifying data out associations:

• Using expressions

• Using the simplistic approach

To specify the data out association using expressions we need to define the target
variable and the source expression. The approach is pretty straightforward and similar
data input associations:

1 <dataOutputAssociation>
2 <targetRef>dataOutputOfProcess</targetRef>
3 <transformation>${dataOutputOfServiceTask.prettyPrint}</transformation>
4 </dataOutputAssociation>

On the other hand, we can use the simplistic approach which is much simpler. The
sourceRef element is a property of the item definition and the targetRef element is a
TechDoc variable name. The approach is pretty straightforward and similar data input
associations:

1 <dataOutputAssociation>
2 <sourceRef>prettyPrint</sourceRef>
3 <targetRef>OutputVariable</targetRef>
4 </dataOutputAssociation>

5.5.4. Manual Task

Description

A manual task defines a task that is external to the BPM engine. It is used to model work
that is done by somebody, which the engine does not need to know of, nor is there a
system or UI interface. For the engine, a manual task is handled as a pass-through
activity, automatically continuing the process from the moment process execution
arrives into it.

Graphical Notation

A manual task is visualized as a rounded rectangle, with a little hand icon in the upper
left corner

 BPMN 2.0 Constructs

TechDoc Workflow Guide 83

XML representation

1 <manualTask id="myManualTask" name="Call client for more information" />

5.5.5. Receive Task

Description

A receive task is a simple task that waits for the arrival of a certain message. When
process execution arrives at a Receive Task, the process state is committed to the
persistence store. This means that the process will stay in this wait state, until a specific
message is received by the engine, which triggers the continuation of the process past
the Receive Task.

Graphical notation

A receive task is visualized as a task (rounded rectangle) with a message icon in the top
left corner. The message is white (a black message icon would have send semantics)

XML representation

1 <receiveTask id="waitState" name="wait" />

5.5.6. Send Task

Description

A send task is a simple task that broadcasts a message in the workflow engine. This
message can be received by other Receive Tasks in the same process or any other
processes in the process engine.

 BPMN 2.0 Constructs

TechDoc Workflow Guide 84

Graphical notation

A send task is visualized as a task (rounded rectangle) with a message icon in the top left
corner. The message is black (a white message icon would have receive semantics)

XML representation

1 <sendTask id="sendMsg" name="send" />

5.5.7. Shell Task

Description

The shell task allows to run shell scripts and commands. Note that the Shell task is not
an official task of BPMN 2.0 spec (and it does not have a dedicated icon as a
consequence).

Defining a shell task

The shell task is implemented as a dedicated Service Task and is defined by setting 'shell'
for the type of the service task.

1 <serviceTask id="shellEcho" docubrain:type="shell">

The shell task is configured by field injection. All the values for these properties can
contain EL expressions, which are resolved at runtime during process execution. The
following properties can be set:

Property Required? Type Description Default

command Yes String Shell
command to
execute

arg0-5 No String Parameter 0 to
Parameter 5

wait No Boolean True if the
workflow

true

 BPMN 2.0 Constructs

TechDoc Workflow Guide 85

process should
wait until the
shell process
has
terminated,
false
otherwise

redirectError No Boolean True if
standard error
should be
merged with
standard
output, false
otherwise

false

cleanEnv No Boolean True if the
shell process
should inherit
a clean
environment,
false
otherwise

false

outputVariable No String Name of the
workflow
process
variable to
receive the
output of the
shell process

Output is not
recorded

errorCodeVariable No String Name of the
workflow
process
variable to
receive the
result error
code of the
shell process

Error code is
not recorded

directory No String Sets the
working
directory the
shell process
should execute
under

Current
directory

 BPMN 2.0 Constructs

TechDoc Workflow Guide 86

Example usage

The following XML snippet shows an example of using the shell Task. It runs shell script
"cmd /c echo EchoTest", waits for it to be terminated and puts the result in resultVar:

1 <serviceTask id="shellEcho" docubrain:type="shell" >
2 <extensionElements>
3 <docubrain:field name="command" stringValue="cmd" />
4 <docubrain:field name="arg1" stringValue="/c" />
5 <docubrain:field name="arg2" stringValue="echo" />
6 <docubrain:field name="arg3" stringValue="EchoTest" />
7 <docubrain:field name="wait" stringValue="true" />
8 <docubrain:field name="outputVariable" stringValue="resultVar" />
9 </extensionElements>
10 </serviceTask>

5.6. Sub-Processes and Call Activities

5.6.1. Sub-Process

Description

A Sub-Process is an activity that contains other activities, gateways, events, etc. which
on itself form a process that is part of the bigger process. A Sub-Process is completely
defined inside a parent process (that’s why it’s often called an embedded Sub-Process).

Sub-Processes have two major use cases:

• Sub-Processes allow hierarchical modeling.

• A Sub-Process creates a new scope for events. Events that are thrown during
execution of the Sub-Process, can be caught by a boundary event on the
boundary of the Sub-Process, thus creating a scope for that event limited to the
Sub-Process.

Using a Sub-Process does impose some constraints:

• A Sub-Process can only have one none start event; no other start event types are
allowed. A Sub-Process must at least have one end event. Note that the BPMN
2.0 specification allows to omit the start and end events in a Sub-Process, but
TechDoc does not support this.

• Sequence flow cannot cross Sub-Process boundaries.

 BPMN 2.0 Constructs

TechDoc Workflow Guide 87

Graphical Notation

A Sub-Process is visualized as a typical activity, i.e., a rounded rectangle. In case the Sub-
Process is collapsed, only the name and a plus-sign are displayed, giving a high-level
overview of the process:

In case the Sub-Process is expanded, the steps of the Sub-Process are displayed within
the Sub-Process boundaries:

One of the main reasons to use a Sub-Process, is to define a scope for a certain event.
The following process model shows this: both the investigate software/investigate
hardware tasks need to be done in parallel, but both tasks need to be done within a
certain time, before Level 2 support is consulted. Here, the scope of the timer (i.e.,
which activities must be done in time) is constrained by the Sub-Process.

 BPMN 2.0 Constructs

TechDoc Workflow Guide 88

XML representation

A Sub-Process is defined by the subprocess element. All activities, gateways, events, etc.
that are part of the Sub-Process, need to be enclosed within this element.

1 <subProcess id="subProcess">
2 <startEvent id="subProcessStart" />
3 ... other Sub-Process elements ...
4 <endEvent id="subProcessEnd" />
5 </subProcess>

5.6.2. Event Sub-Process

Description

The Event Sub-Process is new in BPMN 2.0. An Event Sub-Process is a subprocess that is
triggered by an event. An Event Sub-Process can be added at the process level or at any
subprocess level. The event used to trigger an event subprocess is configured using a
start event. From this, it follows that none start events are not supported for Event Sub-
Processes. An Event Sub-Process might be triggered using events like message events,
error events, signal events, timer events, or compensation events. The subscription to
the start event is created when the scope (process instance or subprocess) hosting the
Event Sub-Process is created. The subscription is removed when the scope is destroyed.

An Event Sub-Process may be interrupting or non-interrupting. An interrupting
subprocess cancels any executions in the current scope. A non-interrupting Event Sub-
Process spawns a new concurrent execution. While an interrupting Event Sub-Process
can only be triggered once for each activation of the scope hosting it, a non-interrupting

 BPMN 2.0 Constructs

TechDoc Workflow Guide 89

Event Sub-Process can be triggered multiple times. The fact whether the subprocess is
interrupting is configured using the start event triggering the Event Sub-Process.

An Event Sub-Process must not have any incoming or outgoing sequence flows. Since an
Event Sub-Process is triggered by an event, an incoming sequence flow makes no sense.
When an Event Sub-Process is ended, either the current scope is ended (in case of an
interrupting Event Sub-Process), or the concurrent execution spawned for the non-
interrupting subprocess is ended.

Current limitations:

• TechDoc only supports interrupting Event Sub-Processes.

• TechDoc only supports Event Sub-Process triggered using an Error Start Event or
Message Start Event.

Graphical Notation

An Event Sub-Process might be visualized as a an embedded subprocess with a dotted
outline.

XML representation

An Event Sub-Process is represented using XML in the same way as a an embedded
subprocess. In addition, the attribute triggeredByEvent must have the value true:

1 <subProcess id="eventSubProcess" triggeredByEvent="true">
2 ...
3 </subProcess>

Example

The following is an example of an Event Sub-Process triggered using an Error Start
Event. The Event Sub-Process is located at the "process level", i.e., is scoped to the
process instance:

 BPMN 2.0 Constructs

TechDoc Workflow Guide 90

This is how the Event Sub-Process would look like in XML:

1 <subProcess id="eventSubProcess" triggeredByEvent="true">
2 <startEvent id="catchError">
3 <errorEventDefinition errorRef="error" />
4 </startEvent>
5 <sequenceFlow id="flow2" sourceRef="catchError"

targetRef="taskAfterErrorCatch" />
6 <userTask id="taskAfterErrorCatch" name="Provide additional data" />
7 </subProcess>

As already stated, an Event Sub-Process can also be added to an embedded subprocess.
If it is added to an embedded subprocess, it becomes an alternative to a boundary
event. Consider the two following process diagrams. In both cases the embedded
subprocess throws an error event. Both times the error is caught and handled using a
user task.

 BPMN 2.0 Constructs

TechDoc Workflow Guide 91

as opposed to:

 BPMN 2.0 Constructs

TechDoc Workflow Guide 92

In both cases the same tasks are executed. However, there are differences between
both modelling alternatives:

• The embedded subprocess is executed using the same execution of the scope it
is hosted in. This means that an embedded subprocess has access to the
variables local of its scope. When using a boundary event, the execution created
for executing the embedded subprocess is deleted by the sequence flow leaving
the boundary event. This means that the variables created by the embedded
subprocess are not available anymore.

• When using an Event Sub-Process, the event is completely handled by the
subprocess it is added to. When using a boundary event, the event is handled by
the parent process.

These two differences can help you decide whether a boundary event or an embedded
subprocess is better suited for solving a particular process modeling / implementation
problem.

5.6.3. Call activity (subprocess)

Description

BPMN 2.0 makes a distinction between a regular subprocess, often also called
embedded subprocess, and the call activity, which looks very similar. From a conceptual
point of view, both will call a subprocess when process execution arrives at the activity.

The difference is that the call activity references a process that is external to the process
definition, whereas the subprocess is embedded within the original process definition.
The main use case for the call activity is to have a reusable process definition that can be
called from multiple other process definitions.

When process execution arrives in the call activity, a new execution is created that is a
sub-execution of the execution that arrives in the call activity. This sub-execution is then
used to execute the subprocess, potentially creating a parallel child execution within the
parent process. The super-execution waits until the subprocess has completely ended
before continuing the parent process.

Graphical Notation

A call activity is visualized the same as a subprocess, however with a thick border
(collapsed and expanded).

 BPMN 2.0 Constructs

TechDoc Workflow Guide 93

XML representation

A call activity is a regular activity, that requires a calledElement that references a
process definition by its key. In practice, this means that the id of the process is used in
the calledElement.

1 <callActivity id="callCheckCreditProcess" name="Check credit"
calledElement="checkCreditProcess" />

Note that the process definition of the subprocess is resolved at runtime. This means
that the subprocess can be deployed independently from the calling process, if needed.

Passing variables

You can pass process variables to the sub process and vice versa. The data is copied into
the subprocess when it is started and copied back into the main process when it ends.

1 <callActivity id="callSubProcess" calledElement="checkCreditProcess" >
2 <extensionElements>
3 <docubrain:in source="someVariableInMainProcess"

target="nameOfVariableInSubProcess" />
4 <docubrain:out source="someVariableInSubProcess"

target="nameOfVariableInMainProcess" />
5 </extensionElements>
6 </callActivity>

We use a TechDoc Extension as a shortcut for the BPMN standard elements called
dataInputAssociation and dataOutputAssociation, which only work if you declare
process variables in the BPMN 2.0 standard way.

It is possible to use expressions here as well:

1 <callActivity id="callSubProcess" calledElement="checkCreditProcess" >
2 <extensionElements>
3 <docubrain:in sourceExpression="${x+5}" target="y" />
4 <docubrain:out source="${y+5}" target="z" />
5 </extensionElements>

 BPMN 2.0 Constructs

TechDoc Workflow Guide 94

6 </callActivity>

So, in the end z = y+5 = x+5+5

 TechDoc Service Task Operations

TechDoc Workflow Guide 95

6. TechDoc Service Task Operations

In this section, we will discuss the TechDoc operations that are available for use from a
Service Task within a workflow Process. If you are not familiar with using Service Tasks
to call TechDoc Activities, please first read the previous section.

6.1. Add Access Association

Add Access Association allows you to add access associations to a Document for
multiple Groups, Users, and Remote Users in a single call.

Service Class: wm.activity.AddAccessAssociation

Fields:

• Groups – (Optional) – The Groups field is used to specify access to be added for
one or more Groups separated by semicolons. The value of this field should be
specified as:

groupName:accessSetting, accessSetting;

For example, to associate a Group named TestGroup with Read and Modify
access, you would specify:

TestGroup:Read,Modify;

If you wanted to add an additional Group named AnotherGroup to the previous
example with Owner access you would specify:

TestGroup:Read,Modify;AnotherGroup:Owner;

• Users – (Optional) – The Users field is used to specify access to be added for one
or more Users separated by semicolons. The value of this field should be
specified just like the Groups field:

username:accessSetting, accessSetting;

For Example, to associate a User named Joe with Delete access, you would
specify:

Joe:Delete;

 TechDoc Service Task Operations

TechDoc Workflow Guide 96

If you wanted to add an additional User named Bob to the previous example
with Reserve/Replace and Delete access you would specify:

Joe:Delete;Bob:Reserve/Replace,Delete;

• RemoteUsers – (Optional) – The RemoteUsers field is used to specify access to be
added for one or more Remote Users separated by semicolons. Remote Users do
not have access values when associating. Any associated Remote user is given
Read access only. The value of this field should be specified as:

authenticatorName\username;

For example, to associate a Remote User named Joe that authenticates using the
Authenticator named TestAuthenticator you would specify:

TestAuthenticator\Joe;

Remote Users can also be specified as Remote User name @ Authenticator
name. For example:

joe@TestAuthenticator;

• Reason – (Mandatory) – The Reason field must be specified when calling this
operation. The value entered should be treated just as a Reason field in TechDoc
explaining why you are performing this operation.

At the time of the writing of this guide, the valid Document Access values are

o None – A User has no access to the Document.

o Read – A User can view the attributes of this Document, view the
attributes of this Document's Generations and Renditions and fetch this
Document's Generations and Renditions.

o Modify – A User can modify the attributes of this Document and this
Document's Generations and Renditions. The User must also have the
Modify Document privilege.

o Delete – A User can delete this Document. The User must also have the
Delete Document privilege.

o Reserve/Replace – A User can reserve and replace the Document. The
User must also have the Create Generation privilege.

 TechDoc Service Task Operations

TechDoc Workflow Guide 97

o Owner – A User can act as the owner of this Document. The User will be
able to do anything to the Document that the owner can, as long as the
User's privileges allow it.

6.2. Add Commenter Association

Add Commenter Association allows you to add commenter associations to a Document
for multiple Groups and Users in a single call.

Service Class: wm.activity.AddCommenterAssociation

Fields:

• Groups – (Optional) – The Groups field is used to specify one or more Groups to
be added separated by semicolons. The value of this field should be specified as:

groupName;groupName;

For example, to associate a Group named TestGroup you would specify:

TestGroup;

If you wanted to add an additional Group named AnotherGroup to the previous
example, you would specify:

TestGroup;AnotherGroup;

• Users – (Optional) – The Users field is used to specify one or more Users to be
added separated by semicolons. The value of this field should be specified just
like the Groups field:

username;username;

For Example, to associate a User named Joe, you would specify:

Joe;

If you wanted to add an additional User named Bob to the previous example,
you would specify:

Joe;Bob;

 TechDoc Service Task Operations

TechDoc Workflow Guide 98

• Reason – (Mandatory) – The Reason field must be specified when calling this
operation. The value entered should be treated just as a Reason field in TechDoc
explaining why you are performing this operation.

6.3. Add Distribution Association

Add Distribution Association allows you to add distribution associations to a Document
for multiple Groups, Users, and Remote Emails in a single call.

Service Class: wm.activity.AddDistributionAssociation

Fields:

• Groups – (Optional) – The Groups field is used to specify one or more Groups to
be added separated by semicolons. The value of this field should be specified as:

groupName;groupName;

For example, to associate a Group named TestGroup you would specify:

TestGroup;

If you wanted to add an additional Group named AnotherGroup to the previous
example, you would specify:

TestGroup;AnotherGroup;

• Users – (Optional) – The Users field is used to specify one or more Users to be
added separated by semicolons. The value of this field should be specified just
like the Groups field:

username;username;

For Example, to associate a User named Joe, you would specify:

Joe;

If you wanted to add an additional User named Bob to the previous example,
you would specify:

Joe;Bob;

 TechDoc Service Task Operations

TechDoc Workflow Guide 99

• RemoteEmails – (Optional) – The RemoteEmails field is used to specify one or
more Remote Emails to be added separated by semicolons. The value of this
field should be specified just like Groups and Users:

remoteEmail;remoteEmail;

For example, to associate the Remote Email joe@somewhere.com you would
specify:

joe@somewhere.com;

If you wanted to add an additional Remote bob@somewhere.com to the
previous example, you would specify:

joe@somewhere.com;bob@somewhere.com;

• Reason – (Mandatory) – The Reason field must be specified when calling this
operation. The value entered should be treated just as a Reason field in TechDoc
explaining why you are performing this operation.

6.4. Add Keyword

Add Keyword allows you to add a Keyword to a Document.

Service Class: wm.activity.AddKeyword

Fields:

• KeywordName – (Mandatory) – The KeywordName field is used to specify the
name of the Keyword to add.

• KeywordValue – (Mandatory) – The KeywordValue field is used to specify the
value this Keyword should have.

• Reason – (Mandatory) – The Reason field must be specified when calling this
operation. The value entered should be treated just as a Reason field in TechDoc
explaining why you are performing this operation.

 TechDoc Service Task Operations

TechDoc Workflow Guide 100

6.5. Add Notification Association

Add Notification Association allows you to add notification associations to a Document
for multiple Groups, Users, and Remote Emails in a single call.

Service Class: wm.activity.AddNotificationAssociation

Fields:

• Groups – (Optional) – The Groups field is used to specify one or more Groups to
be added separated by semicolons. The value of this field should be specified as:

groupName;groupName;

For example, to associate a Group named TestGroup you would specify:

TestGroup;

If you wanted to add an additional Group named AnotherGroup to the previous
example, you would specify:

TestGroup;AnotherGroup;

• Users – (Optional) – The Users field is used to specify one or more Users to be
added separated by semicolons. The value of this field should be specified just
like the Groups field:

username;username;

For Example, to associate a User named Joe, you would specify:

Joe;

If you wanted to add an additional User named Bob to the previous example,
you would specify:

Joe;Bob;

• RemoteEmails – (Optional) – The RemoteEmails field is used to specify one or
more Remote Emails to be added separated by semicolons. The value of this
field should be specified just like Groups and Users:

remoteEmail;remoteEmail;

 TechDoc Service Task Operations

TechDoc Workflow Guide 101

For example, to associate the Remote Email joe@somewhere.com you would
specify:

joe@somewhere.com;

If you wanted to add an additional Remote bob@somewhere.com to the
previous example, you would specify:

joe@somewhere.com;bob@somewhere.com;

• Reason – (Mandatory) – The Reason field must be specified when calling this
operation. The value entered should be treated just as a Reason field in TechDoc
explaining why you are performing this operation.

6.6. Release Document

Release Document allows you to release a Document.

Service Class: wm.activity.ReleaseDocument

Fields:

• Revision – (Mandatory) – The Revision field is used to specify the revision
number to use for the released Document.

• Render – (Mandatory) – The Render field is used to specify whether or not the
Document should be rendered. Use True or False.

• Reason – (Mandatory) – The Reason field must be specified when calling this
operation. The value entered should be treated just as a Reason field in TechDoc
explaining why you are performing this operation.

If the Document being released is a Metric Document, the following fields must also
be specified:

• MetricDate – (Mandatory) – The MetricDate field is usually used to specify the
reporting end date for a Metric. A Date in this field should be specified as:

07/31/2004

 TechDoc Service Task Operations

TechDoc Workflow Guide 102

• MetricStatus – (Mandatory) – The MetricStatus field is used to specify the metric
status of the Document at the time of releasing. A MetricStatus field should be
specified as:

Green - Improving

At the time of the writing of this guide, the valid Metric Status values are:

 Inactive

 Green - Improving

 Green - Staying Constant

 Green - Worsening

 Yellow - Improving

 Yellow - Staying Constant

 Yellow - Worsening

 Red - Improving

 Red - Staying Constant

 Red - Worsening

6.7. Remove Access Association

Remove Access Association allows you to remove access associations from a Document
for multiple Groups, Users, and Remote Users in a single call. When removing access for
a Group, User, or Remote User, only the name can be specified. When a Group, User or
Remote User is specified for removal, all access associations for that Group, User, or
Remote User are removed from the Document.

Service Class: wm.activity.RemoveAccessAssociation

Fields:

• Groups – (Optional) – The Groups field is used to specify access to be removed
for one or more Groups separated by semicolons. The value of this field should
be specified as:

groupName;

For example, to remove a Group named TestGroup, you would specify:

TestGroup;

If you wanted to add an additional Group to remove named AnotherGroup to the
previous example, you would specify:

 TechDoc Service Task Operations

TechDoc Workflow Guide 103

TestGroup;AnotherGroup;

• Users – (Optional) – The Users field is used to specify access to be removed for
one or more Users separated by semicolons. The value of this field should be
specified just like the Groups field:

username;

For Example, to remove a User named Joe, you would specify:

Joe;

If you wanted to add an additional User to remove named Bob to the previous
example, you would specify:

Joe;Bob;

• RemoteUsers – (Optional) – The RemoteUsers field is used to specify access to be
removed for one or more Remote Users separated by semicolons. The value of
this field should specified as:

authenticatorName\username;

For example, to remove a Remote User named Joe that authenticates using the
Authenticator named TestAuthenticator you would specify:

TestAuthenticator\Joe;

Remote Users can also be specified as Remote User name @ Authenticator
name. For example:

joe@TestAuthenticator;

• Reason – (Mandatory) – The Reason field must be specified when calling this
operation. The value entered should be treated just as a Reason field in TechDoc
explaining why you are performing this operation.

6.8. Remove Commenter Association

Remove Commenter Association allows you to remove commenter associations from a
Document for multiple Groups and Users in a single call.

 TechDoc Service Task Operations

TechDoc Workflow Guide 104

Service Class: wm.activity.RemoveCommenterAssociation

Fields:

• Groups – (Optional) – The Groups field is used to specify one or more Groups to
be removed separated by semicolons. The value of this field should be specified
as:

groupName;groupName;

For example, to remove a Group named TestGroup you would specify:

TestGroup;

If you wanted to add an additional Group to remove named AnotherGroup to the
previous example, you would specify:

TestGroup;AnotherGroup;

• Users – (Optional) – The Users field is used to specify one or more Users to be
removed separated by semicolons. The value of this field should be specified just
like the Groups field:

username;username;

For Example, to remove a User named Joe, you would specify:

Joe;

If you wanted to add an additional User to remove named Bob to the previous
example, you would specify:

Joe;Bob;

• Reason – (Mandatory) – The Reason field must be specified when calling this
operation. The value entered should be treated just as a Reason field in TechDoc
explaining why you are performing this operation.

 TechDoc Service Task Operations

TechDoc Workflow Guide 105

6.9. Remove Distribution Association

Remove Distribution Association allows you to remove distribution associations from a
Document for multiple Groups, Users, and Remote Emails in a single call.

Service Class: wm.activity.RemoveDistributionAssociation

Fields:

• Groups – (Optional) – The Groups field is used to specify one or more Groups to
be removed separated by semicolons. The value of this field should be specified
as:

groupName;groupName;

For example, to remove a Group named TestGroup you would specify:

TestGroup;

If you wanted to add an additional Group to remove named AnotherGroup to the
previous example, you would specify:

TestGroup;AnotherGroup;

• Users – (Optional) – The Users field is used to specify one or more Users to be
removed separated by semicolons. The value of this field should be specified just
like the Groups field:

username;username;

For Example, to remove a User named Joe, you would specify:

Joe;

If you wanted to add an additional User to remove named Bob to the previous
example, you would specify:

Joe;Bob;

• RemoteEmails – (Optional) – The RemoteEmails field is used to specify one or
more Remote Emails to be removed separated by semicolons. The value of this
field should be specified just like Groups and Users:

remoteEmail;remoteEmail;

 TechDoc Service Task Operations

TechDoc Workflow Guide 106

For example, to remove the Remote Email joe@somewhere.com you would
specify:

joe@somewhere.com;

If you wanted to add the additional Remote Email to remove
bob@somewhere.com to the previous example, you would specify:

joe@somewhere.com;bob@somewhere.com;

• Reason – (Mandatory) – The Reason field must be specified when calling this
operation. The value entered should be treated just as a Reason field in TechDoc
explaining why you are performing this operation.

6.10. Remove Keyword

Remove Keyword allows you to remove a Keyword from a Document.

Service Class: wm.activity.RemoveKeyword

Fields:

• KeywordName – (Mandatory) – The KeywordName field is used to specify the
name of the Keyword to remove.

• KeywordValue – (Optional) – The KeywordValue field is used to specify the value
of the Keyword to remove. If the KeywordValue is not specified, all Keywords
with the KeywordName specified will be removed from the Document.

• Reason – (Mandatory) – The Reason field must be specified when calling this
operation. The value entered should be treated just as a Reason field in TechDoc
explaining why you are performing this operation.

6.11. Remove Notification Association

Remove Notification Association allows you to remove notification associations from a
Document for multiple Groups, Users, and Remote Emails in a single call.

Service Class: wm.activity.RemoveNotificationAssociation

 TechDoc Service Task Operations

TechDoc Workflow Guide 107

Fields:

• Groups – (Optional) – The Groups field is used to specify one or more Groups to
be removed separated by semicolons. The value of this field should be specified
as:

groupName;groupName;

For example, to remove a Group named TestGroup you would specify:

TestGroup;

If you wanted to add an additional Group to remove named AnotherGroup to the
previous example, you would specify:

TestGroup;AnotherGroup;

• Users – (Optional) – The Users field is used to specify one or more Users to be
removed separated by semicolons. The value of this field should be specified just
like the Groups field:

username;username;

For Example, to remove a User named Joe, you would specify:

Joe;

If you wanted to add an additional User to remove named Bob to the previous
example, you would specify:

Joe;Bob;

• RemoteEmails – (Optional) – The RemoteEmails field is used to specify one or
more Remote Emails to be removed separated by semicolons. The value of this
field should be specified just like Groups and Users:

remoteEmail;remoteEmail;

For example, to remove the Remote Email joe@somewhere.com you would
specify:

joe@somewhere.com;

 TechDoc Service Task Operations

TechDoc Workflow Guide 108

If you wanted to add the additional Remote Email to remove
bob@somewhere.com to the previous example, you would specify:

joe@somewhere.com;bob@somewhere.com;

• Reason – (Mandatory) – The Reason field must be specified when calling this
operation. The value entered should be treated just as a Reason field in TechDoc
explaining why you are performing this operation.

6.12. Replace Keyword

Replace Keyword allows you to replace the value of an existing Keyword on a Document.

Service Class: wm.activity.ReplaceKeyword

Fields:

• KeywordName – (Mandatory) – The KeywordName field is used to specify the
name of the Keyword whose value should be replaced.

• KeywordValue – (Mandatory) – The KeywordValue field is used to specify the
new value for the Keyword.

• Reason – (Mandatory) – The Reason field must be specified when calling this
operation. The value entered should be treated just as a Reason field in TechDoc
explaining why you are performing this operation.

6.13. Reserve Document

Reserve Document allows you to reserve a Document.

Service Class: wm.activity.ReserveDocument

Fields:

• Reason – (Mandatory) – The Reason field must be specified when calling this
operation. The value entered should be treated just as a Reason field in TechDoc
explaining why you are performing this operation.

 TechDoc Service Task Operations

TechDoc Workflow Guide 109

6.14. Simple Web Request

This operation gives the ability to be able to craft and send any kind of web request. This
operation can be used to hand build anything from a simple HTTP get or basic a REST
request to a large and complex SOAP operation call. Simple Web Request is also a great
when unique web services need to be called that are propriety/one off and cannot be
used by a standard Service Task because they do not follow a publicly accepted
standard.

Service Class: wm.activity.SimpleWebRequest

Fields:

• RequestUrl – (Mandatory) – The request URL field must specify the web address
where the request should be sent.

• RequestMethod – (Optional) – The HTTP request method i.e. GET, POST, PUT,
etc. When a RequestMethod isn’t specified, the request defaults to GET.

• RequestHeaders – (Optional) – One or more HTTP headers may be specified to
be included in the request. Each header and value should be separated by a
colon and if more than one header and header value is specified, they should be
separated using a vertical bar. For example:

Accept: text/plain|Accept-Charset: utf-8

• RequestBody – (Optional) – The body text to include in the request if a body is
needed.

6.15. Select Document

Select Document is used to “Select” the Document that all subsequent operations will
target when called. For example, if you select a Document with the Document number
testDocument, all operations called afterwards would target testDocument. If you were
to call Reserve Document, testDocument would be reserved.

When calling Select Document, you must either specify the Document number or
Document ID of the Document to select.

Service Class: wm.activity.SelectDocument

Fields:

 TechDoc Service Task Operations

TechDoc Workflow Guide 110

• DocNumber – The DocNumber field is used to select a Document by its
Document number.

or

• DocID – The DocID field is used to select a Document but its Document ID.

• Reason – (Mandatory) – The Reason field must be specified when calling this
operation. The value entered should be treated just as a Reason field in TechDoc
explaining why you are performing this operation.

6.16. Send Email

Send Email allows you to send an email from within a workflow Process.

Service Class: wm.activity.SendEmail

Fields:

• To – (Mandatory) – The To field is used to specify the email address where the
email should be sent.

• Subject – (Optional) – The Subject field is used to specify the subject line of the
email.

• Body – (Optional) – The Body field is used to specify the body of the email.

• Cc – (Optional) – The Cc field is used to specify the carbon copy recipients that
should also receive this email.

• Bcc – (Optional) – The Bcc field is used to specify the blind carbon copy recipients
that should also receive this email but not be visible to the other recipients.

• Reason – (Mandatory) – The Reason field must be specified when calling this
operation. The value entered should be treated just as a Reason field in TechDoc
explaining why you are performing this operation.

It is important to note that Send Email does allow additional body sections (paragraphs)
to be added to the email. The first paragraph is specified using the Body field. If more
paragraphs are desired after just this first one, you may use the fields:

Body2, Body3, Body4, Body5, Body6, Body7, Body8, Body9, and Body10

 TechDoc Service Task Operations

TechDoc Workflow Guide 111

to specify up to 9 additional paragraphs for the email.

6.17. Unrelease Document

Unrelease Document allows you to unrelease a Document.

Service Class: wm.activity.UnreleaseDocument

Fields:

• Revision – (Mandatory) – The Revision field is used to specify the revision
number of the Document to unrelease.

• Reason – (Mandatory) – The Reason field must be specified when calling this
operation. The value entered should be treated just as a Reason field in TechDoc
explaining why you are performing this operation.

6.18. Unreserve Document

Unreserve Document allows you to unreserve a Document.

Service Class: wm.activity.UnreserveDocument

Fields:

• Reason – (Mandatory) – The Reason field must be specified when calling this
operation. The value entered should be treated just as a Reason field in TechDoc
explaining why you are performing this operation.

 Script Task Helper Objects

TechDoc Workflow Guide 112

7. Script Task Helper Objects

The TechDoc BPMN Script Task can be used to get and set process variables as well as
build and parse complex objects and blocks of data using JavaScript. Along with all of
the basic JavaScript functions, TechDoc has many additional helper objects that are
available to aid in building and parsing different types of data. In the sections below,
we’ll cover each of the helper objects and the functionalities they expose. Each of the
helper objects are prefixed with DB (short for DocuBrain) to help with any ambiguity. It
is advised that any process variable naming or JavaScript variable/object naming done
on the user’s part try and avoid anything starting with DB.

7.1. DBBase64

The DBBase64 object can be used to encode and decode base 64 encoded data. The
data can be sourced/saved directly from/to process variables. This object contains the
following two functions:

• decodeBytes – This function takes a base 64 encoded string and return a byte
array of decoded data.

• encodeBytes – This function takes a byte array of data and returns a base 64
encoded string.

As an example, one may base 64 encode a process variable using the following:

 var encodedVal = DBBase64.encodeBytes(YOUR_PROCESS_VAR);

7.2. DBHtmlParser

The DBHtmlParser object is available to help with parsing HTML. Typically, this function
is used after a Simple Web Request service task call to parse the response received. For
example, a simple HTTP GET can be performed and then this function can be used to
locate and save various pieces of information to process variables. To get started, simply
create a new DBHtmlParser object passing the HTML to parse:

 var htmlParser = new DBHtmlParser(YOUR_PROCESS_VAR);

Then you may get the root document element:

var docRoot = htmlParser.getRoot();

 Script Task Helper Objects

TechDoc Workflow Guide 113

At this point, you now have a JSoup document root object, you can begin call any of the
standard functions available in the JSoup library. For more information on JSoup and all
that it has to offer, please visit https://jsoup.org.

7.3. DBJsonBuilder

The DBJsonBuilder object allows you to create a full JSON object without the need to
construct the formatted string by hand. DBJsonBuilder takes a single parameter; a
boolean that specifies whether or not the base JSON object is an array. If the base
object should be created as an array, true should be specified. If a plain JSON object is
needed, just specify false. For example, to create a plain JSON object one should enter
the following:

 var jsonBuilder = new DBJsonBuilder(false);

After this, one should begin by first getting the object root:

 var root = jsonBuilder.getRoot();

Once the root is obtained, one can begin adding child fields and objects. For example, to
add a few string keys and values field one could do the following:

root.add("title", "Title Here");
root.add("body", "Body Here");
root.add("userId", "42");

To modify the title field:

 root.set(“title”, “new title here”);

To remove the title field all together:

 root.remove(“title”);

Finally, child objects and arrays can be added using the same methods as listed above.
For example, one could create a new child object called person and add it to the root.

 // Create a new person object.
 var personBuilder = new DBJsonBuilder(false);
 var person = personBuilder.getRoot();
 person.set(“name”, “John”);
 person.set(“age”, 30);

https://jsoup.org/

 Script Task Helper Objects

TechDoc Workflow Guide 114

 // Add the person object to the root object.
 root.add(“person”, person);

 // To create an array of people, first create the individuals.
 var person1Builder = new DBJsonBuilder(false);
 var person1 = person1Builder.getRoot();
 person1.set(“name”, “mike”);

person1.set(“age”, 31);

 var person2Builder = new DBJsonBuilder(false);
 var person2 = person2Builder.getRoot();
 person2.set(“name”, “Jim”);

person2.set(“age”, 32);

// Now create an array to hold the people.

 var peopleBuilder = new DBJsonBuilder(true);
 var people = peopleBuilder.getRoot();
 people.add(person1);
 people.add(person2);

 // Finally add the people array to the root object.
 root.add(“people”, people);

 // When it’s time to save the JSON object to a string based process variable…
 YOUR_PROCESS_VAR = root.toString();

For more information on the operators available, please visit:
https://github.com/ralfstx/minimal-json

7.4. DBJsonParser

The DBJsonParser object allows you to parse a JSON object without the need to walk a
big string variable by hand. DBJsonParser takes a single parameter, the JSON string to
parse. For example:

 // Create a new instance of the JSON parser.
 var jsonParser = new DBJsonParser(YOUR_PROCESS_VAR);

 // Get the root JSON object to start working with.
 var rootJsonObjOrArray = jsonParser.getRoot();

 // Getting a string value.

https://github.com/ralfstx/minimal-json

 Script Task Helper Objects

TechDoc Workflow Guide 115

 var stringVal = rootJsonObjOrArray.get(“myString”);

 // Getting child object.
 var childObj = rootJsonObjOrArray.get(“myChildObject”);

For more information on the operators available, please visit:
https://github.com/ralfstx/minimal-json

7.5. DBNow

The DBNow object can be used to get the date and time at the moment it is called. This
is handy as a workflow process might be built right now and not executed for months
and you need the date and time at the very moment the process executes. DBNow can
be used as follows:

 // Get the current date and time in the ISO 8601 format.
 var currentDateTime = DBNow.iso8601DateTime();

 // Get the current date in day-month-year format.
 var currentDate = DBNow.dateTime(‘dd-MM-yyyy’);

The dateTime function accepts anything that Java allows using Java’s SimpleDateFormat.
For more information on the format, please visit:
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html

7.6. DBSoapUtils

The DBSoapUtils object can be when building a SOAP request to generate some of the
various pieces needed to complete the request envelope. The object features the
following functions:

 // Generate a random message ID.
 var msgID = DBSoapUtils.generateRandomMessageID();

 // Generate random nonce bytes.
 var nonceBytes = DBSoapUtils.generateRandomNonceBytes();

 // Generate random nonce bytes in a base 64 encoded string.
 var nonceBytes64 = DBSoapUtils.generateRandomNonceBase64();

 // To generate a password digest using your nonce value (you may pass either
 // nonceBytes or nonceBytes64), created (an ISO8601 date time), and a

https://github.com/ralfstx/minimal-json
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html

 Script Task Helper Objects

TechDoc Workflow Guide 116

 // password.
 var digest = DBSoapUtils.generatePasswordDigest(nonce, created, password);

This is all that exists now in the DBSoapUtils object but if there are any other core type
functionalities you need to generate a SOAP message, let us know and we’ll get them
added.

7.7. DBXmlBuilder

The DBXmlBuilder object allows you to create a full XML object without the need to
construct the formatted string by hand. For example, to create an XML object one
should enter the following:

 var xmlBuilder = new DBXmlBuilder();

After this, one should begin by first getting the object root:

 var root = xmlBuilder.getRoot();

Once the root is obtained, one can begin constructing the document using all of the
standard methods available in the Java XML API. For example, to create an element:

 var elm = root.createElement(‘MyTagName’);

To set an attribute on that element:

 elm.setAttribute(‘attributeNameHere’, ‘attributeValueHere’);

To remove an attribute:

 elm.removeAttribute(‘attributeNameHere’);

To remove a child element:

 root.removeChild(elm);

For more information on the operators available, please visit:
http://docs.oracle.com/javase/6/docs/api/org/w3c/dom/Document.html

http://docs.oracle.com/javase/6/docs/api/org/w3c/dom/Document.html

 Script Task Helper Objects

TechDoc Workflow Guide 117

7.8. DBXmlParser

The DBXmlParser object allows you to parse an XML object without the need to walk a
big string variable by hand. DBXmlParser takes a single parameter, the XML string to
parse. For example:

 // Create a new instance of the XML parser.
 var xmlParser = new DBXmlParser(YOUR_PROCESS_VAR);

 // Get the root XML object to start working with.
 var root = xmlParser.getRoot();

There are many different functions available on the DBXmlParser instance.

7.8.1. containsAttribute

To check if an attribute exists on an element, the following function can be used:

 if (xmlParser.containsAttribute(elementToCheck, attributeName))

Pass the element to check and the name of the attribute to look for. The function will
return true if the attribute exists or false if it does not.

7.8.2. elementToString

To write and element to a string, the following function can be used. Specify the
element to write out, true/false to skip the XML declaration, true/false to prettily
format the text.

 var str = xmlParser.elementToString(element, false, true);

7.8.3. findElementByID

This function can be used to traverse a single node, many nodes, or the entire document
to locate and retrieve a single node by its ID. For example, to search the whole
document:

 var elementFound = xmlParser.findElementByID(root, ‘ID_HERE’);

 Script Task Helper Objects

TechDoc Workflow Guide 118

7.8.4. findElementByName

This function can be used to traverse a node, node tree or document to locate and
retrieve an element by its name. This function returns the first element it encounters.
For example, to find and return the first element with the name ‘color’:

 var element = xmlParser.findElementByName(nodeToSearch, ‘color’, true);

The last parameter specifies whether or not to ignore the namespace of the element. If
true is specified, the namespace will be ignored and just ‘color’ should be passed. If the
namespace is important, pass false and specify ‘yourNameSpace:color’.

7.8.5. findElementsByAttributeValue

This function can be used to find and return all of the child elements under the element
specified that have the attribute name and value specified. Additionally, the type of
element should be specified i.e. ‘div’, ‘input’, etc. For example:

var divList = xmlParser.findElementsByAttributeValue(root, ‘div’, attributeName,
attrbuteValue);

The return value of this function is an array.

7.8.6. getRoot

This function returns the root node of the document. For example:

 var documentRoot = xmlParser.getRoot();

7.8.7. hideNodes

This function can be used to hide specific nodes from showing up in subsequent parse
calls. For example, if you wanted to hide all of the div nodes that had a specific attribute
name and value present you could:

 xmlParser.hideNodes(root, ‘div’, ‘favoriteColor’, ‘blue’);

In this example, any div in the entire document that had an attribute named
favoriteColor with a value of blue would be hidden.

 Script Task Helper Objects

TechDoc Workflow Guide 119

7.8.8. parseAttributeValueAsBoolean

This function can be called to parse and return the specified attribute on an element as
a boolean. For example:

var boolVal = xmlParser.parseAttributeValueAsBoolean(element, attributeName,
defaultValue);

The element and attribute name should be specified as well as the default value to
return should the attribute not exist.

7.8.9. parseAttributeValueAsDouble

This function can be called to parse and return the specified attribute on an element as
a double. For example:

var dblVal = xmlParser.parseAttributeValueAsDouble(element, attributeName,
defaultValue);

The element and attribute name should be specified as well as the default value to
return should the attribute not exist.

7.8.10. parseAttributeValueAsInteger

This function can be called to parse and return the specified attribute on an element as
an integer. For example:

var intVal = xmlParser.parseAttributeValueAsInteger(element, attributeName,
defaultValue);

The element and attribute name should be specified as well as the default value to
return should the attribute not exist.

7.8.11. parseAttributeValueAsString

This function can be called to parse and return the specified attribute on an element as
a string. For example:

var stringVal = xmlParser.parseAttributeValueAsString(element, attributeName,
defaultValue);

 Script Task Helper Objects

TechDoc Workflow Guide 120

The element and attribute name should be specified as well as the default value to
return should the attribute not exist.

7.8.12. parseAttributesByPrefix

This function can be called to parse and return all of the attributes of an element whose
attribute name starts with the prefix specified. For example:

var attributeList = xmlParser.parseAttributesByPrefix(element, ‘TechDoc’);

In the example above, a list of attributes is returned that contains only attributes with
names that start with TechDoc.

7.8.13. parseChildNode

This function can be called to parse and return a single child node of an element. For
example:

var childNode = xmlParser.parseChildNode(parentNode, ‘myTag’, true);

In the example above, the first child node with a tag name of ‘myTag’ is returned. The
third parameter specifies whether or not to ignore the namespace. If true is specified,
just ‘myTag’ should be specified. If false is specified, ‘myNamespace:myTag’ should be
specified.

7.8.14. parseChildNodes

This function can be called to parse and return multiple child nodes of an element. For
example:

var childNodes = xmlParser.parseChildNode(parentNode, ‘myTag’, true);

In the example above, any child node with a tag name of ‘myTag’ is returned. The third
parameter specifies whether or not to ignore the namespace. If true is specified, just
‘myTag’ should be specified. If false is specified, ‘myNamespace:myTag’ should be
specified.

7.8.15. parseTextContent

This function can be called to parse and return the text content of the node specified.
For example:

 Script Task Helper Objects

TechDoc Workflow Guide 121

var textContentString = xmlParser.parseTextContent(node);

7.8.16. stripNamespace

This function can be used to strip the namespace off of the string specified. For
example, if you performed a parseChildNode to select a particular element and wanted
its tag name without the namespace you could:

 var tagNameOnly = xmlParser.stripNamespace(myElement);

 TechDoc Server-Side Reference

TechDoc Workflow Guide 122

8. The TechDoc Server-Side Workflow Engine Reference

TechDoc features a complete BPMN 2.0 workflow engine and management system. The

engine is tightly integrated with TechDoc and provides a large set of TechDoc operations

in addition to all the generic features of BPMN. The management system provides both

users and administrators with a management dashboard, real-time process monitoring

tools, user task delegation and much more.

8.1. Workflows Management Menu

The Workflows Management menu contains all of the functioning for creating and

managing Workflow Deployments, Definitions, Processes, and Process Triggers. This

menu also displays Workflow Tasks that need attention, Tasks that are open to claim, and

process instances started by you. Currently, this menu is only available to Users with the

Workflows privilege or Administrators.

Navigation: [DocMgr > Workflows]

A User with the Workflows Manager or Admin privilege will have access to all of the

Workflows Management functions. A User with the Workflows privilege will only have

access to their Workflow Processes.

8.1.1. Creating a Workflow Deployment

Create Workflow Deployment creates a new Workflow Deployment in the Document

Manager. A Workflow Deployment is a package (a .bar file) containing one or more

Workflow Process Definitions their resources and/or images. In order to manually create

a Workflow Deployment, you must save your process/processes from your BPMN editor

as a .bar file (Business Archive File). Using the BPMN Editor, after creating a Workflow

Process and saving it, select Save As from the File menu, and choose "Business Archive

File (.bar)" from the Files of Type drop down when saving.

• The user must have the Workflows, Workflows Manager, or Admin privilege.

Navigation: [DocMgr > Workflows > Side Menu > Create Deployment]

Step 1:

1. Enter the name of the Deployment in the Name box. This is a required field. The
maximum length of this field is 255 characters.

2. Select the Deployment owner in the Owner box by clicking on the down arrow
and selecting a name from the list.

 TechDoc Server-Side Reference

TechDoc Workflow Guide 123

Note: Only an Admin can select the owner of a Deployment.

3. Enter reason for creating the Workflow Deployment in the Reason box. This is a
required field. The maximum length of this field is 255 characters.

4. Click the Cancel button to cancel the command, or click the Next button to
continue.

Step 2:

A Workflow Deployment file is an archive (.bar) file containing one or more Workflow

Processes.

1. At the Deployment box click on the Browse... button to locate the Workflow
Deployment to be load into the Document Manager.

Note: The File Upload box will be displayed.

2. In the Look in box select the drive/folder where the Deployment to be stored in
the Document Manager is located. To display all of the files in the folder, click on
the down arrow and select All Files (*.*). Click on the Deployment to be stored in
the Document Manager. This will automatically insert the filename in the File
name box. Click the Open button.

3. Click the Cancel button to cancel the command, click the Previous button to go
back to the previous screen, or click the OK button to create the Workflow
Deployment.

Notes:

• A new Workflow Deployment Mapping record will be created.
• The Workflow Deployment will be inserted into the Workflow Engine.
• A history record will be generated for creation of the Workflow Deployment.

8.1.2. Deleting a Workflow Deployment

Delete Workflow Deployment deletes an existing Workflow Deployment in the

Document Manager. Multiple steps are required during the process in order to minimize

the chances of an accidental deletion.

• The User must have Owner access to the Workflow Deployment.

Navigation: [DocMgr > Workflows > Side Menu > Deployments > Select Desired
Deployment > Side Menu > Delete]

Step 1:

 TechDoc Server-Side Reference

TechDoc Workflow Guide 124

The Deployment to be deleted and the Deployment attributes are displayed.

1. Click the Cancel button to cancel the command, or click the Next button to
continue.

Step 2:

The Deployment to be deleted and the Deployment attributes are displayed.

1. Enter the reason for deleting the Deployment in the Reason box. This is a
required field. The maximum length of this field is 255 characters.

2. Click the Cancel button to cancel the command, click the Previous button to
return to the previous screen, or click the OK button to delete the Workflow
Deployment.

Notes:

• The Workflow Deployment Mapping record will be deleted.
• The Workflow Deployment will be retracted from the Workflow engine.
• A history record will be generated for deletion of the Workflow Deployment.

8.1.3. Modifying a Workflow Deployment

Modify Workflow Deployment modifies an existing Deployment in the Document

Manager. A Deployment is a bar file package that contains one or more workflow

process definitions and various resource files needed by the deployment. Typically,

Workflow Deployments are created using the DocuBrain Workflow Editor and are

uploaded directly to the TechDoc Document Manager where they will execute. If they

need to be modified, they should be downloaded using the Workflow Editor, modified,

and then re-uploaded to the Document Manager. The Modify Workflow Deployment

servlet only allows an Admin to re-assign the owner of the deployment.

• The user must have the Admin privilege.

Navigation: [DocMgr > Workflows > Side Menu > Deployments > Select Desired
Deployment > Side Menu > Modify]

Step 1:

1. If applicable, modify the owner of the Workflow Deployment by clicking on the
down arrow and selecting a new owner from the list.

2. Enter reason for modifying the Workflow Deployment in the Reason box. This is
a required field. The maximum length of this field is 255 characters.

3. Click the Cancel button to cancel the command, or click the OK button to modify
the Workflow Deployment.

 TechDoc Server-Side Reference

TechDoc Workflow Guide 125

Notes:

• The existing Workflow Deployment record will be modified.
• A history record will be generated for the modification of the Workflow

Deployment.

8.1.4. Showing a Workflow Deployment

Displays Workflow Deployments created in the Document Manager

A Specific Workflow Deployment

Navigation: [DocMgr > Workflows > Side Menu > Deployments > Select Desired
Deployment]

The User must have read access to the Workflow Deployment.

Field Name Description

Deployment ID
The ID used by the Workflow engine to uniquely identify this
Deployment.

Name The name of this Workflow Deployment.

Created The date and time the Deployment was created.

Deployment
Time

The date and time the Deployment was deployed in the
Workflow engine.

Owner
The User that owns this Deployment. Click the owner's name
link to display the User Info screen.

Process Definitions

This section contains all of the Process Definitions contained in this Deployment. The

Name, Process Definition ID, Key, and Version will be displayed for each Process

Definition in the Deployment.

• Click on to Show Info of the specific Process Definition.

Deployment Resources

This section contains all of the resources contained in this Deployment. The filename will

be displayed for each resource in the Deployment.

• Click on to Fetch the specific Deployment resource.

 TechDoc Server-Side Reference

TechDoc Workflow Guide 126

All Workflow Deployments

Navigation: [DocMgr > Workflows > Side Menu > Deployments > Side Menu > All

Deployments]

All Workflow Deployments displays all the Deployments that have been created in the

Document Manager. Note: Only a User with the Workflows Manager or Admin privilege

can show All Deployments.

• The Deployment ID, Name, and Deployment Time are displayed for each
Deployment.

• The number of Deployments is shown.

• Click on to Show Info for the specific Deployment.

My Workflow Deployments

Navigation: [DocMgr > Workflows > Side Menu > Deployments > Side Menu > My

Deployments]

My Workflow Deployments displays all the Deployments that you currently own in the

Document Manager.

• The Deployment ID, Name, and Deployment Time are displayed for each
Deployment.

• The number of Deployments is shown.

• Click on to Show Info for the specific Deployment.

8.1.5. Showing a Workflow Process Definition

Displays Workflow Process Definitions created in the Document Manager

A Specific Workflow Process Definition

Navigation: [DocMgr > Workflows > Side Menu > Process Definitions > Select Desired
Process Definition]

The User must have read access to the Workflow Process Definition.

Field Name Description

Process
Definition ID

The ID used by the Workflow engine to uniquely identify this
Process Definition. This ID is a combination of the Process
Definition's Key and Version number.

Name The name of this Process Definition.

 TechDoc Server-Side Reference

TechDoc Workflow Guide 127

Version
The version of number of this Process Definition. "1"
represents an original deployment of a Process Definition
while subsequent numbers represent each revision.

Deployment ID
The ID used by the Workflow engine to uniquely identify the
Deployment this Process Definition belongs to. Click the
Deployment ID link to display the Deployment Info screen.

Deployment
Name

The name of the Deployment this Process Definition belongs
to.

Key
The Key of this Process Definition. The Key is the original id
given to the process in the BPMN editor it was created in.

Created The date and time the Process Definition was created.

Owner
The User that owns this Process Definition. Click the owner's
name link to display the User Info screen.

Diagram
Resource Name

The Deployment resource name of the thumbnail for this
Process Definition.

Resource Name
The Deployment resource name of the BPMN XML file for
this Process Definition.

Process Diagram

This is a thumbnail of the diagram representing the BPMN logic for this Process

Definition.

All Workflow Process Definitions

Navigation: [DocMgr > Workflows > Side Menu > Process Definitions > Side Menu >

All Process Definitions]

All Workflow Process Definitions displays all the Process Definitions that have been

created in the Document Manager. Note: Only a User with the Workflows Manager or

Admin privilege can show All Process Definitions.

• The Name, Process Definition ID, Key, and Version are displayed for each Process
Definition.

• The number of Process Definitions is shown.

• Click on to Show Info for the specific Process Definition.

My Workflow Process Definitions

Navigation: [DocMgr > Workflows > Side Menu > Process Definitions > Side Menu >

My Process Definitions]

 TechDoc Server-Side Reference

TechDoc Workflow Guide 128

My Workflow Process Definitions displays all the Process Definitions that you currently

own in the Document Manager.

• The Name, Process Definition ID, Key, and Version are displayed for each Process
Definition.

• The number of Process Definitions is shown.

• Click on to Show Info for the specific Process Definition.

Process Definitions in Deployment

Navigation: [DocMgr > Workflows > Side Menu > Deployments > Select Desired

Deployment > Side Menu > Process Definitions]

Process Definitions in Deployment displays all the Process Definitions in the selected

Deployment.

• The Name, Process Definition ID, Key, and Version are displayed for each Process
Definition.

• The number of Process Definitions is shown.

• Click on to Show Info for the specific Process Definition.

8.1.6. Showing a Workflow Process Instance

Displays Workflow Process Instances in the Document Manager

A Specific Workflow Process Instance

Navigation: [DocMgr > Workflows > Side Menu > Process Instances > Select Desired
Process Instance]

The User must have read access to the Workflow Process Instance.

Field Name Description

Name
The Name of the Process Definition this Process Instance
started from.

Process
Instance ID

The ID used by the Workflow engine to uniquely identify this
Process Instance.

Process
Definition ID

The ID used by the Workflow engine to uniquely identify the
Process Definition this Instance belongs to.

Ended The date and time the Process Instance ended.

Suspended Whether or not Process Instance is suspended.

 TechDoc Server-Side Reference

TechDoc Workflow Guide 129

Process Diagram

This is a thumbnail of the diagram representing the BPMN logic for this Process

Instance. The activity circled in red indicates the currently running activity.

All Workflow Process Instances

Navigation: [DocMgr > Workflows > Side Menu > Process Instances > Side Menu > All

Process Instances]

All Workflow Process Instances displays all the Process Instances in the Document

Manager. Note: Only a User with the Workflows Manager or Admin privilege can show

All Process Instances.

• The Name, Process Instance ID, Process Definition ID, Suspended, and Ended,
values are displayed for each Process Instance.

• The number of Process Instances is shown.

• Click on to Show Info for the specific Process Instance.

All Workflow Process Instances that I Started

Navigation: [DocMgr > Workflows > Side Menu > Process Instances > Side Menu >

My Process Instances]

All Workflow Process Instances that I Started displays all the Process Instances in the

Document Manager that you started.

• The Name, Process Instance ID, Process Definition ID, Suspended, and Ended,
values are displayed for each Process Instance.

• The number of Process Instances is shown.

• Click on to Show Info for the specific Process Instance.

Process Instances of Definition

Navigation: [DocMgr > Workflows > Side Menu > Process Definitions > Select Desired

Process Definition > Side Menu > Process Instances]

Process Instances of Definition displays all the Process Instances in the Document

Manager of the selected Process Definition.

• The Name, Process Instance ID, Process Definition ID, Suspended, and Ended,
values are displayed for each Process Instance.

• The number of Process Instances is shown.

• Click on to Show Info for the specific Process Instance.

 TechDoc Server-Side Reference

TechDoc Workflow Guide 130

8.1.7. Showing Workflow Activity

Show Workflow Activity provides a way to view the BPMN specific information for an

individual Workflow activity that is part of a Workflow process. The information

displayed will vary based on the type of activity being displayed.

• The User must have the Workflows privilege with Read access to the Workflow
process.

Navigation: [DocMgr > Workflows > Side Menu > Show Process Instances > Select
Desired Process > Click on the Activity to Display]

Step 1:

The information shown for a Workflow activity will vary depending on the type of

activity being displayed. All activities do have an ID, Name, Type, and Documentation

field, and most activities will have one or more incoming and outgoing sequence flows.

The information displayed will directly correlate to the information displayed when

viewing the activity in the BPMN Editor. The ID shown is the ID that uniquely identifies

an activity in a Workflow process. Any reference to this activity by other activities or

connecting sequence flows will refer to this activity using its ID.

8.1.8. Starting a Workflow Process Instance

Start Workflow Process Instance is used to queue a Process start in the Workflow Engine.

A Process can be started from a Process Definition or started manually on a Document or

Generation.

• The User must have read access to the Process Definition.

Starting a Process from Process Definition

Navigation: [DocMgr > Workflows > Side Menu > Process Definitions > Select Desired
Process Definition > Side Menu > Start Instance]

When starting a Process Instance directly from a Process Definition, you will be

redirected to either the running Process Instance or a screen showing the queued Process

Instance. However, if the Process Definition requires you to complete a starting form,

you must complete the form before the Process can start/queue. Starting forms are used in

a Process to take in and set initial data for the Process. If a form is displayed, follow the

steps below.

1. Follow any instructions displayed for this starting form.
2. Complete each field of the starting form that is required.

 TechDoc Server-Side Reference

TechDoc Workflow Guide 131

3. Click the Cancel button to cancel the command, or click the OK button to start
the Process.

Notes:

• An instance of the Workflow Process will be queued to start on the Workflow
Engine.

Starting a Process on a Document or Generation

Navigation: [DocMgr > Explorer > Select Desired Document or Generation > Side

Menu > Start Process]

When starting a Process on a Document or Generation, the Document and/or Generation

will be passed into the Process. All subsequent commands in the Process will target that

Document and/or Generation.

• The User must have read access to the Document or Generation.

All of the available Processes to start are displayed.

1. Select a Process to start in the Process Trigger box by clicking the down arrow
and choosing a Process Trigger from the list. The Process set in the Process
Trigger selected will be the Process that is started. Only Process Triggers that
have their Command set to "Start Process" can be started manually.

2. Enter the reason for starting the Process in the Reason box. Reason is a required
field. The maximum length of this field is 255 characters.

3. Click the Cancel button to cancel the command, or click the OK button to start
the Process.

Notes:

• An instance of the Workflow Process will be queued to start on the Workflow
Engine.

• A history record will be generated for starting the Workflow Process.

8.1.9. Activating a Workflow Process Instance

Activate Workflow Process Instance is used to wake up a Process Instance that has been

previously suspended by a User. This is sometimes useful because it allows you to stop

and start a process. For example, if a Process Instance looks as though it might time out

because of a timer task waiting on another condition (like a Document to be created) and

you know the condition will be met shortly, you can suspend the Process Instance and

then re-activate it afterwards so that you don't have to restart the entire Process over

again.

 TechDoc Server-Side Reference

TechDoc Workflow Guide 132

8.1.10. Suspending a Workflow Process Instance

Suspend Workflow Process Instance is used to pause the execution of a Process Instance.

This is sometimes useful because it allows you to stop and start a process. For example, if

a Process Instance looks as though it might time out because of a timer task waiting on

another condition (like a Document to be created) and you know the condition will be

met shortly, you can suspend the Process Instance and then re-activate it afterwards so

that you don't have to restart the entire Process over again.

8.1.11. Deleting a Workflow Process Instance

Delete Workflow Process Instance deletes an existing Workflow Process Instance in the

Document Manager. Multiple steps are required during the process in order to minimize

the chances of an accidental deletion.

• The User must have Owner access to the Workflow Process Instance.

Navigation: [DocMgr > Workflows > Side Menu > Process Instances > Select Desired
Process Instance > Side Menu > Delete]

Step 1:

The Process Instance to be deleted and the Process Instance attributes are displayed.

1. Click the Cancel button to cancel the command, or click the Next button to
continue.

Step 2:

The Process Instance to be deleted and the Process Instance attributes are displayed.

1. Enter the reason for deleting the Process Instance in the Reason box. This is a
required field. The maximum length of this field is 255 characters.

2. Click the Cancel button to cancel the command, click the Previous button to
return to the previous screen, or click the OK button to delete the Workflow
Process Instance.

Notes:

• The Workflow Process Instance will be deleted from the Workflow engine.
• A history record will be generated for deletion of the Workflow Process Instance.

 TechDoc Server-Side Reference

TechDoc Workflow Guide 133

8.1.12. Modifying Workflow Process Instance Variables

Modify Workflow Process Instance Variables allows the variables of a workflow process

instance to be modified. Existing variables can be edited or removed and new variables

can be added. This ability can be very handy for a process instance that has become stuck

because of a business process change, design issue, etc.

Notes:

Before the variables of a workflow process instance can be modified, the instance must

first be suspended.

After modifying the variables of a process instance, the instance will be activated again

just before the variable changes are saved.

• The user must have the Workflows, Workflows Manager or Admin privilege.
• The user must have Owner access to the process.

Navigation: [DocMgr > Workflows > Side Menu > Show... > Process Instances > Select
Desired Process Instance > Side Menu > Modify Variables]

Step 1:

A message is displayed that details the importance of understanding the process

instance's design before any attempt at modification is made. Due to the complex nature

of workflow, a single error in the adjustment, creation or removal of a variable can cause

the entire process to terminate on error and become unrecoverable.

1. Click the Cancel button to cancel the command, click the Next button to
continue.

Step 2:

The current process instance variables and their values are displayed. All the variables

can be modified or removed with the exception of current user (if applicable). Like all

other areas in TechDoc the owner or current user of an object can only be modified by an

Admin and if a current user variable does exist on a process instance, it cannot be

removed by anyone including an Admin. Additionally, if a current user variable does not

exist on a process instance, one can be added. However, keep in mind once added it

cannot be removed. New variables can be added by selecting a type from the drop down,

entering a name for the variable next to the drop down and finally clicking the Add

button.

1. Edit the values of any variables needed.
2. Remove any variables if needed.
3. Add any new variables needed.

 TechDoc Server-Side Reference

TechDoc Workflow Guide 134

4. Click the Cancel button to cancel the command, click the Previous button to
return to the previous screen, or click the Next button to continue.

Step 3:

1. Click the Cancel button to cancel the command, click the Previous button to go
back to the previous screen, or click the Next button to continue.

Step 4:

1. Enter the reason for the modification of workflow process instance variables in
the Reason box. This is a required field. The maximum length of this field is 255
characters.

2. Click the Cancel button to cancel the command, click the Previous button to go
back to the previous screen, or click the OK button to perform the modification.

Notes:

• The workflow process instance will be activated.
• The variables changes will be made to the workflow process instance.
• Two history records will be generated. The first record will be created for the

activation of the workflow process instance. The second record will detail all of
the variable changes made on the workflow process instance.

8.1.13. Creating a Workflow Process Trigger

Create Workflow Process Trigger creates a new Process Trigger in the Document

Manager. A Process Trigger is used to trigger the start of a selected Workflow Process

after a command is executed and a preset condition is met by the specified Document

attributes or Keywords. For example, if you were to create a Process Trigger that

specified a Workflow Process Definition named "MyFirstWorkflowProcess", the

command "Create Document", and the Document Category "NS - Non-Sensitive

Information", anytime a Document is created with the Document Category "NS - Non-

Sensitive Information" a new instance of the "MyFirstWorkflowProcess" Process is

started. When starting the instance, the Document that triggered the process becomes the

"selected" document that all subsequent actions in the process will target (i.e. reserve

document, release document, add keyword etc.). Therefore, when designing a Process

that will be triggered by a Document, it is unnecessary to "select" the Document to work

with in the Process as this will be done for you when the Process is triggered.

• The user must have the Workflows Manager or Admin privilege.

Navigation: [DocMgr > Workflows > Side Menu > Create Process Trigger]

Step 1:

 TechDoc Server-Side Reference

TechDoc Workflow Guide 135

1. Enter the Name for the Process Trigger in the Name box. The Process Trigger
Name must be unique within the same Document Manager. The maximum
length of this field is 255 characters.

2. Select the Process Trigger owner in the Owner box by clicking on the down arrow
and selecting a name from the list.

Note: Only an Admin can select the owner of a Process Trigger.

3. Select the command this Process Trigger should act upon in the Command box
by clicking on the down arrow and selecting a command from the list.

4. Select a Process Definition in either the Process Definition ID or Process
Definition Key drop down. You may select either one or the other, not both. A
Process Definition has both an ID and Key. The ID is unique and can belong to
only one version of one Process Definition whereas the Key is not unique and is
used to identify all versions of a Process Definition. Each time a Process
Definition is updated, a newer version is created. If you select a Process
Definition by ID, it is guaranteed that that specific Process Definition will always
be used even if a newer version is uploaded. If you select a Process Definition by
Key, it is guaranteed that the latest version of a Process Definition will be used.

5. Enter reason for creating the Workflow Process Trigger in the Reason box. This is
a required field. The maximum length of this field is 255 characters.

6. If the command is not "Start Process", additional criteria may be added to the
trigger to further limit which documents will cause the trigger to fire. If an
additional criterion is desired, select a Document attribute or Keyword from
either the New Doc Attribute or New Doc Keyword box, click the Add button,
and enter or select the value for the new criterion that was just added.

"Start Process" does not allow any additional criteria. All other commands can
optionally have one or more additional criteria.

7. Click the Cancel button to cancel the command, or click the OK button to create
the Workflow Process Trigger.

Notes:

• A new Workflow Process Trigger record will be created.
• A history record will be generated for the creation of the Workflow Process

Trigger.

8.1.14. Modifying a Workflow Process Trigger

Modify Workflow Process Trigger modifies an existing Process Trigger in the Document

Manager. A Process Trigger is used to trigger the start of a selected Workflow Process

after a command is executed and a preset condition is met by the specified Document

attributes or Keywords. For example, if you were to create a Process Trigger that

 TechDoc Server-Side Reference

TechDoc Workflow Guide 136

specified a Workflow Process Definition named "MyFirstWorkflowProcess", the

command "Create Document", and the Document Category "NS - Non-Sensitive

Information", anytime a Document is created with the Document Category "NS - Non-

Sensitive Information" a new instance of the "MyFirstWorkflowProcess" Process is

started. When starting the instance, the Document that triggered the process becomes the

"selected" document that all subsequent actions in the process will target (i.e. reserve

document, release document, add keyword etc.). Therefore, when designing a Process

that will be triggered by a Document, it is unnecessary to "select" the Document to work

with in the Process as this will be done for you when the Process is triggered.

• The user must have the Workflows Manager, or Admin privilege.

Navigation: [DocMgr > Workflows > Side Menu > Process Triggers > Select Desired
Process Trigger > Side Menu > Modify]

Step 1:

1. If applicable, modify the Name for the Process Trigger in the Name box. The
Process Trigger Name must be unique within the same Document Manager. The
maximum length of this field is 255 characters.

2. Select the Process Trigger owner in the Owner box by clicking on the down arrow
and selecting a name from the list.

Note: Only an Admin can select the owner of a Process Trigger.

3. If applicable, modify the command this Process Trigger should act upon in the
Command box by clicking on the down arrow and selecting a command from the
list.

4. If applicable, modify the Process this Process Trigger should start by selecting a
Process Definition in either the Process Definition ID or Process Definition Key
drop down. You may select either one or the other, not both. A Process
Definition has both an ID and Key. The ID is unique and can belong to only one
version of one Process Definition whereas the Key is not unique and is used to
identify all versions of a Process Definition. Each time a Process Definition is
updated, a newer version is created. If you select a Process Definition by ID, it is
guaranteed that that specific Process Definition will always be used even if a
newer version is uploaded. If you select a Process Definition by Key, it is
guaranteed that the latest version of a Process Definition will be used.

5. Enter reason for modifying the Workflow Process Trigger in the Reason box. This
is a required field. The maximum length of this field is 255 characters.

6. If applicable, modify the Document attributes and/or Keywords used as
additional criteria to determine which documents will cause this Process Trigger
to fire.

 TechDoc Server-Side Reference

TechDoc Workflow Guide 137

"Start Process" does not allow any additional criteria. All other commands can
optionally have one or more additional criteria.

7. Click the Cancel button to cancel the command, or click the OK button to modify
the Workflow Process Trigger.

Notes:

• The existing Workflow Process Trigger record will be modified.
• The existing Workflow Process Trigger attribute records will be modified.
• A history record will be generated for the modification of the Workflow Process

Trigger.

8.1.15. Deleting a Workflow Process Trigger

Delete Workflow Process Trigger deletes an existing Workflow Process Trigger in the

Document Manager. Multiple steps are required during the process in order to minimize

the chances of an accidental deletion.

• The User must have Owner access to the Workflow Process Trigger.

Navigation: [DocMgr > Workflows > Side Menu > Process Triggers > Select Desired
Process Trigger > Side Menu > Delete]

Step 1:

The Process Trigger to be deleted and the Process Trigger attributes are displayed.

1. Click the Cancel button to cancel the command, or click the Next button to
continue.

Step 2:

The Process Trigger to be deleted and any Process Trigger attributes are displayed.

1. Enter the reason for deleting the Process Trigger in the Reason box. This is a
required field. The maximum length of this field is 255 characters.

2. Click the Cancel button to cancel the command, click the Previous button to
return to the previous screen, or click the OK button to delete the Workflow
Process Trigger.

Notes:

• The Workflow Process Trigger record will be deleted.
• Any additional Workflow Process Trigger attribute records will be deleted.
• A history record will be generated for deletion of the Workflow Process Trigger.

 TechDoc Server-Side Reference

TechDoc Workflow Guide 138

8.1.16. Showing a Workflow Process Trigger

Displays Workflow Process Triggers created in the Document Manager

A Specific Workflow Process Trigger

Navigation: [DocMgr > Workflows > Side Menu > Process Triggers > Select Desired
Process Trigger]

The User must have read access to the Workflow Process Trigger.

Field Name Description

Name The name of this Process Trigger.

Process
Definition

ID

The ID used by the Workflow engine to uniquely identify the
Process Definition of the Process this Trigger will start. When
using an ID, it is guaranteed that that exact Process Definition
will always be used. If a newer version is uploaded, this trigger
will continue to use the older version you specified. This value
will be empty if a Process Definition Key is used instead.

Process
Definition

Key

The Key used by the Workflow engine to identify the Process
Definition of the Process this Trigger will start. When using a
Key, the newest version of a Process Definition will be used. This
means, after a trigger is created, every time a Process Definition
is updated and a new version is created, this trigger will
automatically begin use the new version in the future. This value
will be empty if a Process Definition ID is used instead.

Owner
The User that owns this Process Trigger. Click the owner's name
link to display the User Info screen.

Created The date and time the Process Trigger was created.

Command The command that this Process Trigger will act on.

Workflow Process Trigger Attributes

This section contains all of the attributes contained in this Process Trigger. The attribute

Type, Name, and Value will be displayed for each attribute in the Process Trigger.

All Workflow Process Triggers

Navigation: [DocMgr > Workflows > Side Menu > Process Triggers > Side Menu > All

Process Triggers]

 TechDoc Server-Side Reference

TechDoc Workflow Guide 139

All Workflow Process Triggers displays all the Process Triggers that have been created in

the Document Manager. Note: Only a User with the Workflows Manager or Admin

privilege can show All Process Triggers.

• The Name and Process Definition ID are displayed for each Process Trigger.
• The number of Process Triggers is shown.

• Click on to Show Info for the specific Process Trigger.

My Workflow Process Triggers

Navigation: [DocMgr > Workflows > Side Menu > Process Triggers > Side Menu > My

Process Triggers]

My Workflow Process Triggers displays all the Process Triggers that you currently own

in the Document Manager.

• The Name and Process Definition ID are displayed for each Process Trigger.
• The number of Process Triggers is shown.

• Click on to Show Info for the specific Process Trigger.

8.1.17. Showing a Workflow Task

Displays Workflow Tasks in the Document Manager

A Specific Workflow Task

Navigation: [DocMgr > Workflows > Side Menu > Tasks > Select Desired Task]

The User must have read access to the Workflow Task.

Field Name Description

Task ID
The ID used by the Workflow engine to uniquely identify this
Task.

Name The name of this Task.

Description
The description of this Task. Typically, the description is a
set of instructions on how to complete the Task.

Process
Instance ID

The ID used by the Workflow engine to uniquely identify the
Process Instance this Task belongs to.

Process
Definition ID

The ID used by the Workflow engine to uniquely identify the
Process Definition this Task belongs to.

Assignee The User that is assigned to completed this task.

 TechDoc Server-Side Reference

TechDoc Workflow Guide 140

Owner
The User that owns this Task. Click the owner's name link to
display the User Info screen.

Created The date and time the Task was created.

Due Date The date and time this Task must be completed.

All Workflow Tasks

Navigation: [DocMgr > Workflows > Side Menu > Tasks > Side Menu > All Tasks]

All Workflow Tasks displays all the Tasks in the Document Manager. Note: Only a User

with the Workflows Manager or Admin privilege can show All Workflow Tasks.

• The Task ID, Task Name, and Description are displayed for each Task.
• The number of Tasks is shown.

• Click on to Show Info for the specific Task.

All Workflow Tasks that Need My Attention

Navigation: [DocMgr > Workflows > Side Menu > Tasks > Side Menu > My Tasks]

All Workflow Tasks that Need My Attention displays all Tasks you are assigned in the

Document Manager that need your attention.

• The Task ID, Task Name, and Description are displayed for each Task.
• The number of Tasks is shown.

• Click on to Show Info for the specific Task.

All Workflows Tasks that are Open to Claim

Navigation: [DocMgr > Workflows > Side Menu > Tasks > Side Menu > Open Tasks]

All Workflows Tasks that are Open to Claim displays all Tasks in the Document

Manager that are not yet assigned to a User and are open to claim.

• The Task ID, Task Name, and Description are displayed for each Task.
• The number of Tasks is shown.

• Click on to Show Info for the specific Task.

8.1.18. Completing a Workflow Task

Complete Workflow Task is used to complete a Task that you are assigned. Tasks are

open-ended and can require you do just about anything before clicking to "complete" the

Task. A Task can be a questionnaire you must complete, or be a set of instructions you

must follow. A Task's instructions may require you to perform a task in another

 TechDoc Server-Side Reference

TechDoc Workflow Guide 141

application, or manually perform an operation such as writing and sending an email,

making a phone call to notify someone of something, physically take an envelope or

package and mail it. A Task can instruct you to do just about anything.

• The User must the assignee on the Task.

Navigation: [DocMgr > Workflows > Side Menu > Tasks > Side Menu > My Tasks > Select
Desired Task > Side Menu > Complete]

Step 1:

The Task to be completed is displayed. Read and follow any instructions displayed for

the Task. Complete any form questions displayed. As soon as you are confident that

you've completed the steps required to fulfill the request of the instructions, click the OK

button.

1. Click the Cancel button to cancel the command, or click the OK button to
complete this Task.

Notes:

• The Task will be completed and the Workflow Process will advance to the next
activity.

8.1.19. Claiming a Workflow Task

Claim Workflow Task is used to claim an open Task that you are eligible to claim.

• The User must be a potential owner or be a member of a potential Group.

Navigation: [DocMgr > Workflows > Side Menu > Tasks > Side Menu > Open Tasks >
Select Desired Task > Side Menu > Claim]

Step 1:

The Task to be claimed and the Task attributes are displayed.

1. Click the Cancel button to cancel the command, or click the Next button to
continue.

Step 2:

The Task to be claimed and the Task attributes are displayed.

 TechDoc Server-Side Reference

TechDoc Workflow Guide 142

1. Enter the reason for claiming the Task in the Reason box. This is a required field.
The maximum length of this field is 255 characters.

2. Click the Cancel button to cancel the command, click the Previous button to
return to the previous screen, or click the OK button to claim the Workflow Task.

Notes:

• The Workflow Task will be assigned to you.

8.1.20. Assigning a Workflow Task

Assign Workflow Task is used to assign a Task to a User.

• The User must have the Workflows Manager or Admin privilege.

Navigation: [DocMgr > Workflows > Side Menu > Tasks > Side Menu > All Tasks > Select
Desired Task > Side Menu > Assign]

Step 1:

The Task to be assigned is displayed.

1. Select an Assignee by clicking on the down arrow and selecting a name from the
list.

2. Click the Cancel button to cancel the command, or click the OK button to assign
this Task.

Notes:

• The Task will be assigned to the User selected.

8.1.21. Unassigning a Workflow Task

Unassign Workflow Task is used to unassign a Task.

• The User must have the Workflows Manager or Admin privilege.

Navigation: [DocMgr > Workflows > Side Menu > Tasks > Side Menu > All Tasks > Select
Desired Task > Side Menu > Unassign]

Step 1:

The Task to be unassigned is displayed.

 TechDoc Server-Side Reference

TechDoc Workflow Guide 143

1. Click the Cancel button to cancel the command, or click the OK button to
unassign this Task.

Notes:

• The Task will be unassigned.

8.1.22. Showing a Workflow Queued Process

Displays Workflow Queued Processes in the Document Manager

A Specific Workflow Queued Process

Navigation: [DocMgr > Workflows > Side Menu > Queued Processes > Select Desired
Queued Process]

The User must have read access to the Workflow Queued Process.

Field Name Description

ID
The ID used by the Workflow engine to uniquely identify this
Queued Process.

Created The date and time the Process was queued.

Business
Key

If applicable, the business key of the Process Definition the
Process Instance will start from.

Message
Name

If applicable, the name of the start event message of the Process
Definition(s) the Process Instance(s) will start from.

Process
Definition

ID

If applicable, the ID of the Process Definition the Process
Instance will start from.

Process
Definition

Key

If applicable, the key of the Process Definition the Process
Instance will start from.

Process
Trigger ID

If applicable, the ID of the Process Trigger that will start the
Process Instance.

Retry Count

Indicates the number of times the Queued Process has been
retried to start a Process Instance. If this value is -1, the Queued
Process has exceeded the maximum number of attempts and
has been stalled. This typically happens with a Process Definition
cannot be resolved because it no longer exists, the Process

 TechDoc Server-Side Reference

TechDoc Workflow Guide 144

Trigger no longer exists or had an issue resolving a Process
Definition, etc. If a stalled Queued Process is encountered, the
Workflow Engine log file should detail the cause.

User The owner of the Queued Process.

All Workflow Queued Processes

Navigation: [DocMgr > Workflows > Side Menu > Queued Processes > Side Menu >

All Queued Processes]

All Workflow Queued Processes displays all the Queued Processes in the Document

Manager. Note: Only a User with the Workflows Manager or Admin privilege can show

All Queued Process.

• The ID, Create Date, Message Name, Process Definition ID, Process Definition
Key, Process Trigger ID, and Retry Count, values are displayed for each Queued
Process.

• The number of Queued Processes is shown.

• Click on to Show Info for the specific Queued Process.

All Workflow Queued Processes that I Started

Navigation: [DocMgr > Workflows > Side Menu > Queued Processes > Side Menu >

My Queued Processes]

All Workflow Queued Processes that I Started displays all the Queued Processes in the

Document Manager that you queued to start.

• The ID, Create Date, Message Name, Process Definition ID, Process Definition
Key, Process Trigger ID, and Retry Count, values are displayed for each Queued
Process.

• The number of Queued Processes is shown.

• Click on to Show Info for the specific Queued Process.

8.1.23. Purging All Stalled Workflow Queued Processes

Purge all stalled workflow queued processes purges all stalled workflow queued

processes. Multiple steps are required during the process in order to minimize the chances

of an accidental purge.

• The user must have the Admin or Workflow Manager privilege.

Workflow processes are not started directly but are queued to start when both the

workflow engine is up and running and there is room for process instances to run. When

the engine is stopped or at capacity, workflow processes remain in the queued state. The

Workflow Scheduler background task wakes up periodically and starts processes from

 TechDoc Server-Side Reference

TechDoc Workflow Guide 145

the queue when space is available in the engine. If a process should fail to start for any

reason, it may become stalled. Once stalled, a message is logged in the workflow engine

log. This log can be reviewed to correct the issue(s) for one or more stalled processes and

then those stalled processes can be restarted. If for any reason the issue is not correctable

or it's no longer needed for the process(es) to run, the stalled processes can be purged.

When stalled queued processes are purged, their records are removed from the database

and corresponding processes will not be started for them.

Navigation: [DocMgr > Workflows > Side Menu > Purge Stalled]

Step 1:

1. Click the Cancel button to cancel the command, or click the Next button to
continue.

Step 2:

1. Enter the reason for purging all of the stalled workflow queued processes in the
Reason box. This is a required field.

2. Click the Cancel button to cancel the command, click the Previous button to
return to the previous screen, or click the OK button to purge all of the stalled
workflow queued processes.

Notes:

• All records in the Workflow Queued Process table that have reached the
maximum number of retries will be deleted.

8.1.24. Restarting All Stalled Workflow Queued Processes

Restart stalled processes restarts all stalled Workflow Queued Processes. Multiple steps

are required during the process in order to minimize the chances of an accidental restart.

• The user must have the Admin or Workflows Manager privilege.

Workflow processes are not started directly but are queued to start when both the

workflow engine is up and running and there is room for process instances to run. When

the engine is stopped or at capacity, workflow processes remain in the queued state. The

Workflow Scheduler background task wakes up periodically and starts processes from

the queue when space is available in the engine. If a process should fail to start for any

reason, it may become stalled. Once stalled, a message is logged in the workflow engine

log. This log can be reviewed to correct the issue(s) for one or more stalled processes and

then those stalled processes can be restarted. If for any reason the issue is not correctable

or it's no longer needed for the process(es) to run, the stalled processes can be purged.

 TechDoc Server-Side Reference

TechDoc Workflow Guide 146

When stalled queued processes are restarted, their retry count is set to zero and they will

be eligible to start once again. The Workflow Scheduler will then attempt once again to

start a process for each of those queued processes. This time, if no error occurs, the

process will start normally. If any errors are encountered, each of the queued processes

will become stalled once again.

Navigation: [DocMgr > Admin > Search Manager > Restart Stalled]

Step 1:

1. Click the Cancel button to cancel the command, or click the Next button to
continue.

Step 2:

1. Enter the reason for restarting all of the stalled workflow queued processes in
the Reason box. This is a required field.

2. Click the Cancel button to cancel the command, click the Previous button to
return to the previous screen, or click the OK button to restart all of the stalled
workflow queued processes.

Notes:

• All records in the Workflow Queued Process table that have reached the
maximum number of retries will have their retry count field reset to zero.

 Suggestions and Feedback

TechDoc Workflow Guide 147

9. Suggestions and Feedback

We hope you find the workflow engine to be very useful in automating processes in
TechDoc. As the workflow engine is quite vast and very new, we have chosen to expose
just the TechDoc operations outlined in this guide for this version. As we continue to
build upon the workflow engine, we can begin to add more operations. If you have any
suggestions about operations that should be added, how the workflow engine sections
are laid out in TechDoc, etc., please let us know by sending us email at
suggestions@docubrain.com

If you do happen to find a problem, please feel free to use the same email above. While
we do prefer suggestions and compliments, we also accept criticism (preferably
constructive :-)

At Prevo Technologies, Inc., we take the quality of our products very seriously. If you do
find an issue or something that you feel can be improved upon in the TechDoc workflow
engine, please let us know.

mailto:suggestions@docubrain.com

	1. Introduction
	2. Getting Started
	3. Overview of Features
	3.1. DocuBrain Workflow Editor
	3.2. Workflow Engine
	3.3. Electronic Notifications
	3.4. User Task Management
	3.5. Monitoring and Administration

	4. DocuBrain Workflow Editor Tutorial
	4.1. Layout of the User Interface
	4.1.1. Toolbar
	4.1.2. Left Panel
	4.1.3. Right Panel
	4.1.4. Status Bar

	4.2. Creating a Workflow Process
	4.3. Connecting to a Workflow Engine Repository
	4.4. Deploying to a Workflow Engine Repository
	4.5. Downloading from a Workflow Engine Repository
	4.6. Multi-Process Deployments
	4.7. Importing and Exporting Diagrams
	4.8. Printing a Diagram
	4.9. Working with Fragments
	4.10. Calling TechDoc/BPMN Service Task Operations

	5. BPMN 2.0 Constructs
	5.1. Custom extensions
	5.2. Events
	5.2.1. Event Definitions
	5.2.2. Timer Event Definitions
	5.2.3. Error Event Definitions
	5.2.4. Signal Event Definitions
	5.2.5. Message Event Definitions
	5.2.6. Start Events
	5.2.7. Timer Start Event
	5.2.8. Message Start Event
	5.2.9. Signal Start Events
	5.2.10. Error Start Event
	5.2.11. End Events
	5.2.12. Error End Event
	5.2.13. Terminate End Event
	5.2.14. Boundary Events
	5.2.15. Timer Boundary Event
	5.2.16. Error Boundary Event
	5.2.17. Signal Boundary Event
	5.2.18. Message Boundary Event
	5.2.19. Compensation Boundary Event
	5.2.20. Intermediate Catching Events
	5.2.21. Timer Intermediate Catching Event
	5.2.22. Signal Intermediate Catching Event
	5.2.23. Message Intermediate Catching Event
	5.2.24. Intermediate Throwing Event
	5.2.25. Signal Intermediate Throwing Event
	5.2.26. Compensation Intermediate Throwing Event

	5.3. Sequence Flow
	5.3.1. Description
	5.3.2. Graphical Notation
	5.3.3. XML Representation
	5.3.4. Conditional Sequence Flow
	5.3.5. Default Sequence Flow

	5.4. Gateways
	5.4.1. Exclusive Gateway
	5.4.2. Parallel Gateway
	5.4.3. Inclusive Gateway
	5.4.4. Event-based Gateway

	5.5. Tasks
	5.5.1. User Task
	5.5.2. Script Task
	5.5.3. Service Task
	5.5.4. Manual Task
	5.5.5. Receive Task
	5.5.6. Send Task
	5.5.7. Shell Task

	5.6. Sub-Processes and Call Activities
	5.6.1. Sub-Process
	5.6.2. Event Sub-Process
	5.6.3. Call activity (subprocess)

	6. TechDoc Service Task Operations
	6.1. Add Access Association
	6.2. Add Commenter Association
	6.3. Add Distribution Association
	6.4. Add Keyword
	6.5. Add Notification Association
	6.6. Release Document
	6.7. Remove Access Association
	6.8. Remove Commenter Association
	6.9. Remove Distribution Association
	6.10. Remove Keyword
	6.11. Remove Notification Association
	6.12. Replace Keyword
	6.13. Reserve Document
	6.14. Simple Web Request
	6.15. Select Document
	6.16. Send Email
	6.17. Unrelease Document
	6.18. Unreserve Document

	7. Script Task Helper Objects
	7.1. DBBase64
	7.2. DBHtmlParser
	7.3. DBJsonBuilder
	7.4. DBJsonParser
	7.5. DBNow
	7.6. DBSoapUtils
	7.7. DBXmlBuilder
	7.8. DBXmlParser
	7.8.1. containsAttribute
	7.8.2. elementToString
	7.8.3. findElementByID
	7.8.4. findElementByName
	7.8.5. findElementsByAttributeValue
	7.8.6. getRoot
	7.8.7. hideNodes
	7.8.8. parseAttributeValueAsBoolean
	7.8.9. parseAttributeValueAsDouble
	7.8.10. parseAttributeValueAsInteger
	7.8.11. parseAttributeValueAsString
	7.8.12. parseAttributesByPrefix
	7.8.13. parseChildNode
	7.8.14. parseChildNodes
	7.8.15. parseTextContent
	7.8.16. stripNamespace

	8. The TechDoc Server-Side Workflow Engine Reference
	8.1. Workflows Management Menu
	8.1.1. Creating a Workflow Deployment
	8.1.2. Deleting a Workflow Deployment
	8.1.3. Modifying a Workflow Deployment
	8.1.4. Showing a Workflow Deployment
	8.1.5. Showing a Workflow Process Definition
	8.1.6. Showing a Workflow Process Instance
	8.1.7. Showing Workflow Activity
	8.1.8. Starting a Workflow Process Instance
	8.1.9. Activating a Workflow Process Instance
	8.1.10. Suspending a Workflow Process Instance
	8.1.11. Deleting a Workflow Process Instance
	8.1.12. Modifying Workflow Process Instance Variables
	8.1.13. Creating a Workflow Process Trigger
	8.1.14. Modifying a Workflow Process Trigger
	8.1.15. Deleting a Workflow Process Trigger
	8.1.16. Showing a Workflow Process Trigger
	8.1.17. Showing a Workflow Task
	8.1.18. Completing a Workflow Task
	8.1.19. Claiming a Workflow Task
	8.1.20. Assigning a Workflow Task
	8.1.21. Unassigning a Workflow Task
	8.1.22. Showing a Workflow Queued Process
	8.1.23. Purging All Stalled Workflow Queued Processes
	8.1.24. Restarting All Stalled Workflow Queued Processes

	9. Suggestions and Feedback

