
Activiti 5.16.4 User Guide

Table of Contents

1. Introduction

License

Download

Sources

Required software

JDK 6+

Eclipse Indigo and Juno

Reporting problems

Experimental features

Internal implementation classes

2. Getting Started

One minute version

Activiti setup

Activiti database setup

Include the Activiti jar and its dependencies

Next steps

3. Configuration

Creating a ProcessEngine

ProcessEngineConfiguration bean

Database configuration

JNDI Datasource Configuration

Usage

Configuration

Supported databases

Creating the database tables

Database table names explained

Database upgrade

Job executor activation

Mail server configuration

History configuration

Exposing configuration beans in expressions and scripts

Deployment cache configuration

Logging

Mapped Diagnostic Contexts

Event handlers

Event listener implementation

Configuration and setup

Adding listeners at runtime

Adding listeners to process definitions

Dispatching events through API

Supported event types

Additional remarks

4. The Activiti API

The Process Engine API and services

Exception strategy

Working with the Activiti services

Deploying the process

Starting a process instance

Completing tasks

Suspending and activating a process

Further reading

Query API

Expressions

Unit testing

Debugging unit tests

The process engine in a web application

5. Spring integration

ProcessEngineFactoryBean

Transactions

Expressions

Automatic resource deployment

Unit testing

Annotation-based configuration

JPA with Hibernate 4.2.x

6. Deployment

Business archives

Deploying programmatically

Deploying with Activiti Explorer

External resources

Java classes

Using Spring beans from a process

Creating a single app

Versioning of process definitions

Providing a process diagram

Generating a process diagram

Category

7. BPMN 2.0 Introduction

What is BPMN?

Defining a process

Getting started: 10 minute tutorial

Prerequisites

Goal

Use case

Process diagram

XML representation

Starting a process instance

Task lists

Claiming the task

Completing the task

Ending the process

Code overview

Future enhancements

8. BPMN 2.0 Constructs

Custom extensions

Events

Event Definitions

Timer Event Definitions

Error Event Definitions

Signal Event Definitions

Message Event Definitions

Start Events

None Start Event

Timer Start Event

Message Start Event

Signal Start Event

Error Start Event

End Events

None End Event

Error End Event

Cancel End Event

Boundary Events

Timer Boundary Event

Error Boundary Event

Signal Boundary Event

Message Boundary Event

Cancel Boundary Event

Compensation Boundary Event

Intermediate Catching Events

Timer Intermediate Catching Event

Signal Intermediate Catching Event

Message Intermediate Catching Event

Intermediate Throwing Event

Intermediate Throwing None Event

Signal Intermediate Throwing Event

Compensation Intermediate Throwing Event

Sequence Flow

Description

Graphical notation

XML representation

Conditional sequence flow

Default sequence flow

Gateways

Exclusive Gateway

Parallel Gateway

Inclusive Gateway

Event-based Gateway

Tasks

User Task

Script Task

Java Service Task

Web Service Task

Business Rule Task

Email Task

Mule Task

Camel Task

Manual Task

Java Receive Task

Shell Task

Execution listener

Task listener

Multi-instance (for each)

Compensation Handlers

Sub-Processes and Call Activities

Sub-Process

Event Sub-Process

Transaction subprocess

Call activity (subprocess)

Transactions and Concurrency

Asynchronous Continuations

Fail Retry

Exclusive Jobs

Process Initiation Authorization

Data objects

9. Forms

Form properties

External form rendering

10. JPA

Requirements

Configuration

Usage

Simple Example

Query JPA process variables

Advanced example using Spring beans and JPA

11. History

Querying history

HistoricProcessInstanceQuery

HistoricVariableInstanceQuery

HistoricActivityInstanceQuery

HistoricDetailQuery

HistoricTaskInstanceQuery

History configuration

History for audit purposes

12. Eclipse Designer

Installation

Activiti Designer editor features

Activiti Designer BPMN features

Activiti Designer deployment features

Extending Activiti Designer

Customizing the palette

Validating diagrams and exporting to custom output formats

13. Activiti Explorer

Process diagram

Tasks

Start process instances

My instances

Administration

Reporting

Report data JSON

Example process

Report start forms

Example processes

Changing the database

14. Activiti Modeler

Model editing

Importing existing models

Convert deployed definitions to a editeable model

Export model to BPMN XML

Deploy model to the Activiti Engine

15. REST API

General Activiti REST principles

Installation and Authentication

Deployment

Process Definitions

Models

Process Instances

Executions

Tasks

History

Forms

Database tables

Engine

Runtime

Jobs

Users

Groups

16. CDI integration

Setting up activiti-cdi

Looking up a Process Engine

Configuring the Process Engine

Deploying Processes

Contextual Process Execution with CDI

Associating a Conversation with a Process Instance

Declaratively controlling the Process

Referencing Beans from the Process

Working with @BusinessProcessScoped beans

Injecting Process Variables

Receiving Process Events

Additional Features

Known Limitations

17. LDAP integration

Usage

Use cases

Configuration

Properties

Integrate LDAP in Explorer

18. Advanced

Hooking into process parsing

UUID id generator for high concurrency

Multitenancy

Execute custom SQL

Advanced Process Engine configuration with a ProcessEngineConfigurator

Advanced query API: seamless switching between runtime and historic task querying

Custom identity management by overriding standard SessionFactory

Enable safe BPMN 2.0 xml

Event logging (Experimental)

19. Simulation with Activiti-Crystalball (Experimental)

Introduction

Short overview

CrystalBall is unique

CrystalBall inside

History analysis

Events from the history.

PlayBack

Process engine debugger

Replay

List of Tables

2.1. The demo users

2.2. The webapp tools

3.1. Supported databases

3.2. Supported events

6.1.

6.2.

6.3.

8.1. Mail server configuration

8.2. Mail task configuration

8.3. Mule server configuration

8.4. Endpoint URL parts:

8.5. Existing camel behaviours:

8.6. Existing camel behaviours:

8.7. Shell task parameter configuration

15.1. HTTP-methods and corresponding operations

15.2. HTTP-methods response codes

15.3. URL query parameter types

15.4. JSON parameter types

15.5. Variable query JSON parameters

15.6. Variable query JSON parameters

15.7. Default query JSON types

15.8. Variable JSON attributes

15.9. Variable Types

15.10. URL query parameters

15.11. REST Response codes

15.12. Get a deployment - URL parameters

15.13. Get a deployment - Response codes

15.14. Create a new deployment - Response codes

15.15. Delete a deployment - URL parameters

15.16. Delete a deployment - Response codes

15.17. List resources in a deployment - URL parameters

15.18. List resources in a deployment - Response codes

15.19. Get a deployment resource - URL parameters

15.20. Get a deployment resource - Response codes

15.21. Get a deployment resource content - URL parameters

15.22. Get a deployment resource content - Response codes

15.23. List of process definitions - URL parameters

15.24. List of process definitions - Response codes

15.25. Get a process definition - URL parameters

15.26. Get a process definition - Response codes

15.27. Update category for a process definition - Response codes

15.28. Get a process definition resource content - URL parameters

15.29. Get a process definition BPMN model - URL parameters

15.30. Get a process definition BPMN model - Response codes

15.31. Suspend a process definition - JSON Body parameters

15.32. Suspend a process definition - Response codes

15.33. Activate a process definition - Response codes

15.34. Get all candidate starters for a process-definition - URL parameters

15.35. Get all candidate starters for a process-definition - Response codes

15.36. Add a candidate starter to a process definition - URL parameters

15.37. Add a candidate starter to a process definition - Response codes

15.38. Delete a candidate starter from a process definition - URL parameters

15.39. Delete a candidate starter from a process definition - Response codes

15.40. Get a candidate starter from a process definition - URL parameters

15.41. Get a candidate starter from a process definition - Response codes

15.42. Get a list of models - URL query parameters

15.43. Get a list of models - Response codes

15.44. Get a model - URL parameters

15.45. Get a model - Response codes

15.46. Update a model - Response codes

15.47. Create a model - Response codes

15.48. Delete a model - URL parameters

15.49. Delete a model - Response codes

15.50. Get the editor source for a model - URL parameters

15.51. Get the editor source for a model - Response codes

15.52. Set the editor source for a model - URL parameters

15.53. Set the editor source for a model - Response codes

15.54. Get the extra editor source for a model - URL parameters

15.55. Get the extra editor source for a model - Response codes

15.56. Set the extra editor source for a model - URL parameters

15.57. Set the extra editor source for a model - Response codes

15.58. Get a process instance - URL parameters

15.59. Get a process instance - Response codes

15.60. Delete a process instance - URL parameters

15.61. Delete a process instance - Response codes

15.62. Activate or suspend a process instance - URL parameters

15.63. Activate or suspend a process instance - Response codes

15.64. Start a process instance - Response codes

15.65. List of process instances - URL query parameters

15.66. List of process instances - Response codes

15.67. Query process instances - Response codes

15.68. Get diagram for a process instance - URL parameters

15.69. Get diagram for a process instance - Response codes

15.70. Get involved people for process instance - URL parameters

15.71. Get involved people for process instance - Response codes

15.72. Add an involved user to a process instance - URL parameters

15.73. Add an involved user to a process instance - Response codes

15.74. Remove an involved user to from process instance - URL parameters

15.75. Remove an involved user to from process instance - Response codes

15.76. List of variables for a process instance - URL parameters

15.77. List of variables for a process instance - Response codes

15.78. Get a variable for a process instance - URL parameters

15.79. Get a variable for a process instance - Response codes

15.80. Create (or update) variables on a process instance - URL parameters

15.81. Create (or update) variables on a process instance - Response codes

15.82. Update a single variable on a process instance - URL parameters

15.83. Update a single variable on a process instance - Response codes

15.84. Create a new binary variable on a process-instance - URL parameters

15.85. Create a new binary variable on a process-instance - Response codes

15.86. Update an existing binary variable on a process-instance - URL parameters

15.87. Update an existing binary variable on a process-instance - Response codes

15.88. Get an execution - URL parameters

15.89. Get an execution - Response codes

15.90. Execute an action on an execution - URL parameters

15.91. Execute an action on an execution - Response codes

15.92. Get active activities in an execution - URL parameters

15.93. Get active activities in an execution - Response codes

15.94. List of executions - URL query parameters

15.95. List of executions - Response codes

15.96. Query executions - Response codes

15.97. List of variables for an execution - URL parameters

15.98. List of variables for an execution - Response codes

15.99. Get a variable for an execution - URL parameters

15.100. Get a variable for an execution - Response codes

15.101. Create (or update) variables on an execution - URL parameters

15.102. Create (or update) variables on an execution - Response codes

15.103. Update a variable on an execution - URL parameters

15.104. Update a variable on an execution - Response codes

15.105. Create a new binary variable on an execution - URL parameters

15.106. Create a new binary variable on an execution - Response codes

15.107. Update an existing binary variable on a process-instance - URL parameters

15.108. Update an existing binary variable on a process-instance - Response codes

15.109. Get a task - URL parameters

15.110. Get a task - Response codes

15.111. List of tasks - URL query parameters

15.112. List of tasks - Response codes

15.113. Query for tasks - Response codes

15.114. Update a task - Response codes

15.115. Task actions - Response codes

15.116. >Delete a task - URL parameters

15.117. >Delete a task - Response codes

15.118. Get all variables for a task - URL parameters

15.119. Get all variables for a task - Response codes

15.120. Get a variable from a task - URL parameters

15.121. Get a variable from a task - Response codes

15.122. Get the binary data for a variable - URL parameters

15.123. Get the binary data for a variable - Response codes

15.124. Create new variables on a task - URL parameters

15.125. Create new variables on a task - Response codes

15.126. Create a new binary variable on a task - URL parameters

15.127. Create a new binary variable on a task - Response codes

15.128. Update an existing variable on a task - URL parameters

15.129. Update an existing variable on a task - Response codes

15.130. Updating a binary variable on a task - URL parameters

15.131. Updating a binary variable on a task - Response codes

15.132. Delete a variable on a task - URL parameters

15.133. Delete a variable on a task - Response codes

15.134. Delete all local variables on a task - URL parameters

15.135. Delete all local variables on a task - Response codes

15.136. Get all identity links for a task - URL parameters

15.137. Get all identity links for a task - Response codes

15.138. Get all identitylinks for a task for either groups or users - URL parameters

15.139. Get all identitylinks for a task for either groups or users - Response codes

15.140. Create an identity link on a task - URL parameters

15.141. Create an identity link on a task - Response codes

15.142. Delete an identity link on a task - URL parameters

15.143. Delete an identity link on a task - Response codes

15.144. Create a new comment on a task - URL parameters

15.145. Create a new comment on a task - Response codes

15.146. Get all comments on a task - URL parameters

15.147. Get all comments on a task - Response codes

15.148. Get a comment on a task - URL parameters

15.149. Get a comment on a task - Response codes

15.150. Delete a comment on a task - URL parameters

15.151. Delete a comment on a task - Response codes

15.152. Get all events for a task - URL parameters

15.153. Get all events for a task - Response codes

15.154. Get an event on a task - URL parameters

15.155. Get an event on a task - Response codes

15.156. Create a new attachment on a task, containing a link to an external resource - URL parameters

15.157. Create a new attachment on a task, containing a link to an external resource - Response codes

15.158. Create a new attachment on a task, with an attached file - URL parameters

15.159. Create a new attachment on a task, with an attached file - Response codes

15.160. Get all attachments on a task - URL parameters

15.161. Get all attachments on a task - Response codes

15.162. Get an attachment on a task - URL parameters

15.163. Get an attachment on a task - Response codes

15.164. Get the content for an attachment - URL parameters

15.165. Get the content for an attachment - Response codes

15.166. Delete an attachment on a task - URL parameters

15.167. Delete an attachment on a task - Response codes

15.168. Get a historic process instance - Response codes

15.169. List of historic process instances - URL parameters

15.170. List of historic process instances - Response codes

15.171. Query for historic process instances - Response codes

15.172. Response codes

15.173. Response codes

15.174. Get the binary data for a historic process instance variable - Response codes

15.175. Create a new comment on a historic process instance - URL parameters

15.176. Create a new comment on a historic process instance - Response codes

15.177. Get all comments on a process instance - URL parameters

15.178. Get all comments on a process instance - Response codes

15.179. Get a comment on a historic process instance - URL parameters

15.180. Get a comment on a historic process instance - Response codes

15.181. Delete a comment on a historic process instance - URL parameters

15.182. Delete a comment on a historic process instance - Response codes

15.183. Get a single historic task instance - Response codes

15.184. Get historic task instances - URL parameters

15.185. Get historic task instances - Response codes

15.186. Query for historic task instances - Response codes

15.187. Response codes

15.188. Response codes

15.189. Get the binary data for a historic task instance variable - Response codes

15.190. Get historic activity instances - URL parameters

15.191. Get historic activity instances - Response codes

15.192. Query for historic activity instances - Response codes

15.193. List of historic variable instances - URL parameters

15.194. List of historic variable instances - Response codes

15.195. Query for historic variable instances - Response codes

15.196. Get the binary data for a historic task instance variable - Response codes

15.197. Get historic detail - URL parameters

15.198. Get historic detail - Response codes

15.199. Query for historic details - Response codes

15.200. Get the binary data for a historic detail variable - Response codes

15.201. Get form data - URL parameters

15.202. Get form data - Response codes

15.203. Submit task form data - Response codes

15.204. List of tables - Response codes

15.205. Get a single table - URL parameters

15.206. Get a single table - Response codes

15.207. Get column info for a single table - URL parameters

15.208. Get column info for a single table - Response codes

15.209. Get row data for a single table - URL parameters

15.210. Get row data for a single table - URL query parameters

15.211. Get row data for a single table - Response codes

15.212. Get engine properties - Response codes

15.213. Get engine info - Response codes

15.214. Signal event received - JSON Body parameters

15.215. Signal event received - Response codes

15.216. Get a single job - URL parameters

15.217. Get a single job - Response codes

15.218. Delete a job - URL parameters

15.219. Delete a job - Response codes

15.220. Execute a single job - JSON Body parameters

15.221. Execute a single job - Response codes

15.222. Get the exception stacktrace for a job - URL parameters

15.223. Get the exception stacktrace for a job - Response codes

15.224. Get a list of jobs - URL query parameters

15.225. Get a list of jobs - Response codes

15.226. Get a single user - URL parameters

15.227. Get a single user - Response codes

15.228. Get a list of users - URL query parameters

15.229. Get a list of users - Response codes

15.230. Update a user - Response codes

15.231. Create a user - Response codes

15.232. Delete a user - URL parameters

15.233. Delete a user - Response codes

15.234. Get a user's picture - URL parameters

15.235. Get a user's picture - Response codes

15.236. Updating a user's picture - URL parameters

15.237. Updating a user's picture - Response codes

15.238. List a user's info - URL parameters

15.239. List a user's info - Response codes

15.240. Get a user's info - URL parameters

15.241. Get a user's info - Response codes

15.242. Update a user's info - URL parameters

15.243. Update a user's info - Response codes

15.244. Create a new user's info entry - URL parameters

15.245. Create a new user's info entry - Response codes

15.246. Delete a user's info - URL parameters

15.247. Delete a user's info - Response codes

15.248. Get a single group - URL parameters

15.249. Get a single group - Response codes

15.250. Get a list of groups - URL query parameters

15.251. Get a list of groups - Response codes

15.252. Update a group - Response codes

15.253. Create a group - Response codes

15.254. Delete a group - URL parameters

15.255. Delete a group - Response codes

15.256. Add a member to a group - URL parameters

15.257. Add a member to a group - Response codes

15.258. Delete a member from a group - URL parameters

15.259. Delete a member from a group - Response codes

17.1. LDAP configuration properties

17.2. Advanced properties

Chapter 1. Introduction

Table of Contents

License

Download

Sources

Required software

JDK 6+

Eclipse Indigo and Juno

Reporting problems

Experimental features

Internal implementation classes

License

Activiti is distributed under the Apache V2 license.

Download

http://activiti.org/download.html

Sources

The distribution contains most of the sources as jar files. To find and build the full source codebase, please read the

'Building the distribution' wiki page

Required software

../../license.txt
http://activiti.org/download.html
http://docs.codehaus.org/display/ACT/Developers+Guide#DevelopersGuide-Buildingthedistribution

JDK 6+

Activiti runs on a JDK higher than or equal to version 6. Go to Oracle Java SE downloads and click on button

"Download JDK". There are installation instructions on that page as well. To verify that your installation was

successful, run java - version on the command line. That should print the installed version of your JDK.

Eclipse Indigo and Juno

Download the the eclipse distribution of your choice from the Eclipse download page. Unzip the downloaded file and

then you should be able to start it with the eclipse file in the directory eclipse . Further in this user guide, there is a

section on installing our eclipse designer plugin.

Reporting problems

Every self-respecting developer should have read How to ask questions the smart way.

After you've done that you can post questions and comments on the Users forum and create issues in our JIRA issue

tracker.

Note

Even though Activiti is hosted on GitHub, issues should not be reported using GitHub's issue

system. If you wish to report an issue, do not create a GitHub issue, but use JIRA.

Experimental features

Sections marked with [EXPERIMENTAL] should not be considered stable.

All classes that have .impl. in the package name are internal implementation classes and can not be considered

stable. However, if the user guide mentions those classes as configuration values, they are supported and can be

considered stable.

Internal implementation classes

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.eclipse.org/downloads/
http://www.catb.org/~esr/faqs/smart-questions.html
http://forums.activiti.org/en/viewforum.php?f=3
http://jira.codehaus.org/browse/ACT
http://jira.codehaus.org/browse/ACT
http://jira.codehaus.org/browse/ACT

In the jar file, all classes in packages that have .impl. (e.g.

or g.activiti.engine.impl.pvm.delegate) in them are implementation classes and should be

considered internal. No stability guarantees are given on classes or interfaces that are in implementation classes.

Chapter 2. Getting Started

Table of Contents

One minute version

Activiti setup

Activiti database setup

Include the Activiti jar and its dependencies

Next steps

One minute version

After downloading the Activiti Explorer WAR file from the Activiti website, follow these steps to get the demo setup

running with default settings. You'll need a working Java runtime and Apache Tomcat installation (actually, any web

container would work since we only rely on the servlet capability. But we test on Tomcat primarily).

¶ Copy the downloaded activiti-explorer.war to the webapps directory of Tomcat.

¶ Start Tomcat by running the startup.bat or startup.sh scripts in the bin folder of Tomcat

¶ When Tomcat is started open your browser and go to http://localhost:8080/activiti-explorer. Login with

kermit/kermit.

That's it! The Activiti Explorer application uses an in-memory H2 database by default, if you want to use another

database configuration please read the longer version.

Activiti setup

To install Activiti you'll need a working Java runtime and Apache Tomcat installation. Also make sure that the

JAVA_HOME system variable is correctly set. The way to do this depends on your operating system.

To get the Activiti Explorer and REST web applications running just copy the WARs downloaded from the Activiti

download page to the webapps folder in your Tomcat installation directory. By default the Explorer application runs

with an in-memory database and with example processes, users and groups.

http://www.activiti.org/
http://java.sun.com/javase/downloads/index.jsp
http://tomcat.apache.org/download-70.cgi
http://localhost:8080/activiti-explorer
http://java.sun.com/javase/downloads/index.jsp
http://tomcat.apache.org/download-70.cgi

These are the demo users:

Table 2.1. The demo users

UserId Password Security roles

kermit kermit admin

gonzo gonzo manager

fozzie fozzie user

Now you can access following web application:

Table 2.2. The webapp tools

Webapp

Name
URL Description

Activiti

Explorer

http://localhost:8080/activiti-

explorer

The process engine user console. Use this tool to start new

processes, assign tasks, view and claim tasks, etc. This tool also

allows to administrate the Activiti engine.

Note that the Activiti Explorer demo setup is a way of showing the capabilities and functionality of Activiti as easily

and as fast as possible. This does however, not mean that it is the only way of using Activiti. As Activiti is 'just a jar', it

can be embedded in any Java environment: with swing or on a Tomcat, JBoss, WebSphere, etc. Or you could very

well choose to run Activiti as a typical, standalone BPM server. If it is possible in Java, it is possible with Activiti!

Activiti database setup

As said in the one minute demo setup, the Activiti Explorer runs an in-memory H2 database by default. To run the

Activiti Explorer with a standalone H2 or another database the db.properties in the WEB-INF/classes of the Activiti

Explorer web application should be changed.

In addition, be aware that the Activiti Explorer generates demo user and groups, process definitions and models by

default. To disable this, the activiti-standalone-context.xml file in the WEB-INF folder should be changed. To disable

the demo setup fully you can use the following snippet of the demoDataGenerator bean definition. But as you

can see you can also enable and disable items individually.

 <bean id="demoDataGenerator"

class="org.activiti.explorer.demo.DemoDataGenerator">

http://localhost:8080/activiti-explorer
http://localhost:8080/activiti-explorer

 <property name="processEngine" ref="processEngine" />

 <property name="createDemoUsersAndGroups" value="false" />

 <property name="createDemoProcessDefinitions" value="false" />

 <property name="createDemoModels" value="false" />

 </bean>

Include the Activiti jar and its dependencies

To include the Activiti jar and its dependent libraries, we advise using Maven (or Ivy), as it simplifies dependency

management on both our and your side a lot. Follow the instructions at

http://www.activiti.org/community.html#maven.repository to include the necessary jars in your environment.

Alternatively, if you don't want to use Maven you can include the jars in your project yourself. The Activiti download

zip contains a folder libs which contain all the Activiti jars (and the source jars). The dependencies are not shipped

this way. The required dependencies of the Activiti engine are (generated using mvn dependency:tree):

org.activiti:activiti - engine:jar:5.12.1

+- org.apache.commons:commons - email:jar:1.2:compile

| + - javax.mail:mail:jar:1.4.1:compile

| \ - javax.activation:activation:jar:1.1:compile

+- org.apache.commons:commons - lang3:jar:3.1:compile

+- org.mybatis:mybatis:jar:3.1.1:compile

+- org.springframework:spring - beans:jar:3.1.2.RELEASE:compile

| \ - org.springframework:spring - core:jar:3.1.2.RELEAS E:compile

| + - org.springframework:spring - asm:jar:3.1.2.RELEASE:compile

| \ - commons- logging:commons - logging:jar:1.1.1:compile

\ - joda - time:joda - time:jar:2.1:compile

Note: the mail jars are only needed if you are using the mail service task.

All the dependencies can easily be downloaded using mvn dependency:copy - dependencies on a module

of the Activiti source code.

Next steps

http://maven.apache.org/
http://ant.apache.org/ivy/
http://www.activiti.org/community.html#maven.repository
https://github.com/Activiti/Activiti

Playing around with the Activiti Explorer web application is a good way to get familiar with the Activiti concepts and

functionality. However, the main purpose of Activiti is of course to enable powerful BPM and workflow capabilities in

your own application. The following chapters will help you to get familiar with how to use Activiti programmatically in

your environment:

¶ The chapter on configuration will teach you how to set up Activiti and how to obtain an instance of the

ProcessEngine class which is your central access point to all the engine functionality of Activiti.

¶ The API chapter will guide you through the services which form Activiti's API. These services offer the

Activiti engine functionality in a convenient yet powerful way and can be used in any Java environment.

¶ Interested in getting insight on BPMN 2.0, the format in which processes for the Activiti engine are written?

Then continue on to the BPMN 2.0 section.

Chapter 3. Configuration

Table of Contents

Creating a ProcessEngine

ProcessEngineConfiguration bean

Database configuration

JNDI Datasource Configuration

Usage

Configuration

Supported databases

Creating the database tables

Database table names explained

Database upgrade

Job executor activation

Mail server configuration

History configuration

Exposing configuration beans in expressions and scripts

Deployment cache configuration

Logging

Mapped Diagnostic Contexts

Event handlers

Event listener implementation

Configuration and setup

Adding listeners at runtime

Adding listeners to process definitions

Dispatching events through API

Supported event types

Additional remarks

Creating a ProcessEngine

The Activiti process engine is configured through an XML file called activiti.cfg.xml . Note that this is not

applicable if you're using the Spring style of building a process engine.

The easiest way to obtain a ProcessEngine , is to use the org.activiti.engine.ProcessEngines

class:

ProcessEngine processEngine = ProcessEngines.getDefaultProcessEngine()

This will look for an activiti.cfg.xml file on the classpath and construct an engine based on the configuration

in that file. The following snippet shows an example configuration. The following sections will give a detailed overview

of the configuration properties.

<beans xmlns="http://www.spr ingframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema - instance"

 xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring - beans.xsd">

 <bean id="processEngineC onfiguration"

class="org.activiti.engine.impl.cfg.StandaloneProcessEngineConfiguration">

 <property name="jdbcUrl" value="jdbc:h2:mem:activiti;DB_CLOSE_DELAY=1000"

/>

 <property name="jdbcDriver" value="org.h2.Driver" />

 <property name="jdbcUs ername" value="sa" />

 <property name="jdbcPassword" value="" />

 <property name="databaseSchemaUpdate" value="true" />

 <property name="jobExecutorActivate" value="false" />

 <property name="mailServerHost" value="mail.my - corp.c om" />

 <property name="mailServerPort" value="5025" />

 </bean>

</beans>

Note that the configuration XML is in fact a Spring configuration. This does not mean that Activiti can only be

used in a Spring environment! We are simply leveraging the parsing and dependency injection capabilities of

Spring internally for building up the engine.

The ProcessEngineConfiguration object can also be created programmatically using the configuration file. It is also

possible to use a different bean id (e.g. see line 3).

ProcessEngineConfiguration.createProcessEngineConfigurationFromResourceDefaul

t();

ProcessEngineConfiguration.createProcessEngineConfigurationFromResource(Strin

g resource);

ProcessEngineConfiguration.createProcessEngineConfigurationFromResource(Strin

g resource, String beanName);

ProcessEngineConfiguration.createProcessEngineConfigurationFromInputStream(In

putStream inputStream);

ProcessEngineConfiguration.createProcessEngineCo nfigurationFromInputStream(In

putStream inputStream, String beanName);

It is also possible not to use a configuration file, and create a configuration based on defaults (see the different

supported classes for more information).

ProcessEngineConfiguration.createStandaloneProcessEngineConfiguration();

ProcessEngineConfiguration.createStandaloneInMemProcessEngineConfiguration();

All these ProcessEngineConfiguration.createXXX() methods return a

ProcessEngineConfigura tion that can further be tweaked if needed. After calling the

buildProcessEngine() operation, a ProcessEngine is created:

ProcessEngine processEngine =

ProcessEngineConfiguration.createStandaloneInMemProcessEngineConfiguration()

 .setDatabaseSchemaUpdat e(ProcessEngineConfiguration.DB_SCHEMA_UPDATE_FALSE)

 .setJdbcUrl("jdbc:h2:mem:my - own- db;DB_CLOSE_DELAY=1000")

 .setJobExecutorActivate(true)

 .buildProcessEngine();

ProcessEngineConfiguration bean

The activiti.cfg.xml must contain a bean that has the id 'processEngineConfiguration' .

 <bean id="processEngineConfiguration"

class="org.activiti.engine.impl.cfg.StandaloneProcessEngineConfiguration">

This bean is then used to construct the ProcessEngine . There are multiple classes available that can be used to

define the processEngineConfiguration . These classes represent different environments, and set defaults

accordingly. It's a best practice to select the class the matches (the most) your environment, to minimalise the

number of properties needed to configure the engine. The following classes are currently available (more will follow in

future releases):

¶ org.activiti.engine.impl.cfg.StandaloneProcessEngineConfiguration: the process engine is used in a

standalone way. Activiti will take care of the transactions. By default, the database will only be checked

when the engine boots (and an exception is thrown if there is no Activiti schema or the schema version is

incorrect).

¶ org.activiti.engine.impl.cfg.StandaloneInMemProcessEngineConfiguration: this is a convenience class

for unit testing purposes. Activiti will take care of the transactions. An H2 in-memory database is used by

default. The database will be created and dropped when the engine boots and shuts down. When using this,

probably no additional configuration is needed (except when using for example the job executor or mail

capabilities).

¶ org.activiti.spring.SpringProcessEngineConfiguration: To be used when the process engine is used in a

Spring environment. See the Spring integration section for more information.

¶ org.activiti.engine.impl.cfg.JtaProcessEngineConfiguration: To be used when the engine runs in

standalone mode, with JTA transactions.

Database configuration

There are two ways to configure the database that the Activiti engine will use. The first option is to define the JDBC

properties of the database:

¶ jdbcUrl: JDBC URL of the database.

¶ jdbcDriver: implementation of the driver for the specific database type.

¶ jdbcUsername: username to connect to the database.

¶ jdbcPassword: password to connect to the database.

The data source that is constructed based on the provided JDBC properties will have the default MyBatis connection

pool settings. The following attributes can optionally be set to tweak that connection pool (taken from the MyBatis

documentation):

http://www.mybatis.org/

¶ jdbcMaxActiveConnections: The number of active connections that the connection pool at maximum at

any time can contain. Default is 10.

¶ jdbcMaxIdleConnections: The number of idle connections that the connection pool at maximum at any

time can contain.

¶ jdbcMaxCheckoutTime: The amount of time in milliseconds a connection can be 'checked out' from the

connection pool before it is forcefully returned. Default is 20000 (20 seconds).

¶ jdbcMaxWaitTime: This is a low level setting that gives the pool a chance to print a log status and re-

attempt the acquisition of a connection in the case that itôs taking unusually long (to avoid failing silently

forever if the pool is misconfigured) Default is 20000 (20 seconds).

Example database configuration:

<property name="jdbcUrl" value="jdbc:h2:mem:activiti;DB_CLOSE_DELAY=1000" />

<property name="jdbcDriver" value="org.h2 .Driver" />

<property name="jdbcUsername" value="sa" />

<property name="jdbcPassword" value="" />

Alternatively, a javax.sql.DataSource implementation can be used (e.g. DBCP from Apache Commons):

<bean id="dataSource" class="org.apache.commons.dbcp.BasicDataSource" >

 <property name="driverClassName" value="com.mysql.jdbc.Driver" />

 <property name="url" value="jdbc:mysql://localhost:3306/activiti" />

 <property name="username" value="activiti" />

 <property name="password" value="activiti" />

 <property name="defaultAutoCommit" value="false" />

</bean>

<bean id="processEngineConfiguration"

class="org.activiti.engine.impl.cfg.StandaloneProcessEng ineConfiguration">

 <property name="dataSource" ref="dataSource" />

 ...

Note that Activiti does not ship with a library that allows to define such a data source. So you have to make sure that

the libraries (e.g. from DBCP) are on your classpath.

The following properties can be set, regardless of whether you are using the JDBC or data source approach:

http://commons.apache.org/dbcp/

¶ databaseType: it's normally not necessary to specify this property as it is automatically analyzed from the

database connection meta data. Should only be specified in case automatic detection fails. Possible values:

{h2, mysql, oracle, postgres, mssql, db2}. This property is required when not using the default H2

database. This setting will determine which create/drop scripts and queries will be used. See the 'supported

databases' section for an overview of which types are supported.

¶ databaseSchemaUpdate: allows to set the strategy to handle the database schema on process engine

boot and shutdown.

o false (default): Checks the version of the DB schema against the library when the process

engine is being created and throws an exception if the versions don't match.

o true : Upon building the process engine, a check is performed and an update of the schema is

performed if it is necessary. If the schema doesn't exist, it is created.

o create - drop : Creates the schema when the process engine is being created and drops the

schema when the process engine is being closed.

JNDI Datasource Configuration

By default, the database configuration for Activiti is contained within the db.properties files in the WEB-INF/classes of

each web application. This isn't always ideal because it requires users to either modify the db.properties in the Activiti

source and recompile the war file, or explode the war and modify the db.properties on every deployment.

By using JNDI (Java Naming and Directory Interface) to obtain the database connection, the connection is fully

managed by the Servlet Container and the configuration can be managed outside the war deployment. This also

allows more control over the connection parameters than what is provided by the db.properties file.

Usage

To switch the Activiti Explorer and Activiti Rest web apps from db.properties configuration to JNDI datasource

configuration, open the primary Spring configuration files (activiti-webapp-explorer2/src/main/webapp/WEB-

INF/activiti-standalone-context.xml and activiti-webapp-rest2/src/main/resources/activiti-context.xml), and delete the

beans named "dbProperties" and "dataSource". Then, add the following bean:

<bean id="dataSource" class="org.springframework.jndi.JndiObjectFactoryBean">

 <property name="jndiName" value="java:comp/env/jdbc/activitiDB"/>

</bean>

Next, we need to add context.xml files that contain the default H2 configuration. These will be overridden by your

JNDI configuration, if it exists. For Activiti Explorer, replace the file at activiti-webapp-

explorer2/src/main/webapp/META-INF/context.xml with the following:

<Context antiJARLocking="true" path="/activiti - explorer2">

 <Resource auth="Container"

 name="jdbc/activitiDB"

 type="javax.sql.DataSource"

 scope="Shareable"

 description= "JDBC DataSource"

 url="jdbc:h2:mem:activiti;DB_CLOSE_DELAY=1000"

 driverClassName="org.h2.Driver"

 username="sa"

 password=""

 defaultAutoCommit="false"

 initialSize="5"

 maxWait="5000"

 maxActive="120"

 maxIdle="5"/>

</Context>

For the Activiti REST webapp, add activiti-webapp-rest2/src/main/webapp/META-INF/context.xml containing the

following:

<?xml version="1.0" encoding="U TF- 8"?>

<Context antiJARLocking="true" path="/activiti - rest2">

 <Resource auth="Container"

 name="jdbc/activitiDB"

 type="javax.sql.DataSource"

 scope="Shareable"

 description="JDBC DataSource"

 url="jdbc:h2:mem:activiti;DB_CLOSE_DELAY= - 1"

 driverClassName="org.h2.Driver"

 username="sa"

 password=""

 defaultAutoCommit="false"

 initialSize="5"

 maxWait="5000"

 maxActive="120"

 maxIdle="5"/>

</Context>

As an optional step, you can now delete the unused db.properties files in both the Activiti Explorer and Activiti REST

webapp projects.

Configuration

Configuration of the JNDI datasource will differ depending on what servlet container application you are using. The

instructions below will work for Tomcat, but for other container applications, please refer to the documentation for

your container app.

If using Tomcat, the JNDI resource is configured within

$CATALINA_BASE/conf/[enginename]/[hostname]/[warname].xml (for Activiti Explorer this will usually be

$CATALINA_BASE/conf/Catalina/localhost/activiti-explorer.war). The default context is copied from the Activiti war

file when the application is first deployed, so if it already exists, you will need to replace it. To change the JNDI

resource so that the application connects to MySql instead of H2, for example, change the file to the following:

<?xml version="1.0" encoding="UTF - 8" ?>

 <Context antiJARLocking="true" path="/activiti - explorer2">

 <Resource auth="Container"

 name="jdbc/activitiDB"

 type="javax.sql.DataSource"

 description="JDBC DataSource"

 url="jdbc:mysql://localhos t:3306/activiti"

 driverClassName="com.mysql.jdbc.Driver"

 username="sa"

 password=""

 defaultAutoCommit="false"

 initialSize="5"

 maxWait="5000"

 maxActive="120"

 maxIdle="5"/>

 </Context>

Supported databases

Listed below are the types (case sensitive!) that Activiti uses to refer to databases.

Table 3.1. Supported databases

Activiti database

type
Example JDBC URL Notes

h2 jdbc:h2:tcp://localhost/activiti Default configured database

mysql jdbc:mysql://localhost:3306/activiti?autoReconnect=true
Tested using mysql-connector-java

database driver

oracle jdbc:oracle:thin:@localhost:1521:xe

postgres jdbc:postgresql://localhost:5432/activiti

db2 jdbc:db2://localhost:50000/activiti

mssql jdbc:sqlserver://localhost:1433/activiti

Creating the database tables

The easiest way to create the database tables for your database is to:

¶ Add the activiti-engine jars to your classpath

¶ Add a suitable database driver

¶ Add an Activiti configuration file (activiti.cfg.xml) to your classpath, pointing to your database (see database

configuration section)

¶ Execute the main method of the DbSchemaCreate class

However, often only database administrators can execute DDL statements on a database. On a production system,

this is also the wisest of choices. The SQL DDL statements can be found on the Activiti downloads page or inside the

Activiti distribution folder, in the database subdirectory. The scripts are also in the engine jar (activiti-engine-x.jar),

in the package org/activiti/db/create (the drop folder contains the drop statements). The SQL files are of the form

activiti. {db}.{create|drop}.{type}.sql

Where db is any of the supported databases and type is

¶ engine: the tables needed for engine execution. Required.

¶ identity: the tables containing users, groups and memberships of users to groups. These tables are optional

and should be used when using the default identity management as shipped with the engine.

¶ history: the tables that contain the history and audit information. Optional: not needed when history level is

set to none Note that this will also disable some features (such as commenting on tasks) which store the

data in the history database.

Note for MySQL users: MySQL version lower than 5.6.4 has no support for timestamps or dates with millisecond

precision. To make things even worse, some version will throw an exception when trying to create such a column but

other versions don't. When doing auto-creation/upgrade, the engine will change the DDL when executing it. When

using the DDL file approach, both a regular version and a special file with mysql55 in it are available (this applies on

anything lower than 5.6.4). This latter file will have column types with no millisecond precision it it.

Concretely, the following applies for MySQL version

¶ <5.6: No millisecond precision available. DDL files available (look for files containing mysql55). Auto

creation/update will work out of the box.

¶ 5.6.0 - 5.6.3: No millisecond precision available. Auto creation/update will NOT work. It is advised to

upgrade to a newer database version anyway. DDL files for mysql 5.5 could be used if really needed.

¶ 5.6.4+:Millisecond precision available. DDL files available (default file containing mysql). Auto

creation/update works out of the box.

Do note that in the case of upgrading the MySQL database later on and the Activiti tables are already

created/upgraded, the column type change will have to be done manually!

Database table names explained

The database names of Activiti all start with ACT_. The second part is a two-character identification of the use case

of the table. This use case will also roughly match the service API.

¶ ACT_RE_*: 'RE' stands for repository . Tables with this prefix contain 'static' information such as

process definitions and process resources (images, rules, etc.).

¶ ACT_RU_*: 'RU' stands for runtime . These are the runtime tables, that contain the runtime data of

process instances, user tasks, variables, jobs, etc. Activiti only stores the runtime data during process

instance execution, and removes the records when a process instance ends. This keeps the runtime tables

small and fast.

¶ ACT_ID_*: 'ID' stands for identity . These tables contain identity information, such as users, groups, etc.

¶ ACT_HI_*: 'HI' stands for history . These are the tables that contain historic data, such as past process

instances, variables, tasks, etc.

¶ ACT_GE_*: general data, which is used in various use cases.

Database upgrade

Make sure you make a backup of your database (using your database backup capabilities) before you run an

upgrade.

By default, a version check will be performed each time a process engine is created. This typically happens once at

boot time of your application or of the Activiti webapps. If the Activiti library notices a difference between the library

version and the version of the Activiti database tables, then an exception is thrown.

To upgrade, you have to start with putting the following configuration property in your activiti.cfg.xml configuration file:

<beans ... >

 <bean id="processEngineConfiguration"

class="org.activiti.engine.impl.cfg.StandaloneProcessEngineConfiguration">

 <! -- ... -- >

 <property name="databaseSchemaUpdate" value="true" />

 <! -- ... -- >

 </bean>

</beans>

Also, include a suitable database driver for your database to the classpath. Upgrade the Activiti libraries in your

application. Or start up a new version of Activiti and point it to a database that contains an older version. With

databaseSchemaUpdate set to true , Activiti will automatically upgrade the DB schema to the newer version

the first time when it notices that libraries and DB schema are out of sync.

As an alternative you can also run the upgrade DDL statements. It's also possible to run the upgrade database

scripts, available on the Activiti downloads page.

Job executor activation

The JobExecutor is a component that manages a couple of threads to fire timers (and later also asynchronous

messages). For unit testing scenarios, it is cumbersome to work with multiple threads. Therefore the API allows to

query for (ManagementService.createJobQuery) and execute jobs

(ManagementService.executeJob) through the API so that job execution can be controlled from within a unit

test. To avoid interference by the job executor, it can be turned off.

By default, the JobExecutor is activated when the process engine boots. Specify

<property name="jobExecutorActivate" value="false" />

when you don't want the JobExecutor to be activated upon booting the process engine.

Mail server configuration

Configuring a mail server is optional. Activiti supports sending e-mails in business processes. To actually send an e-

mail, a valid SMTP mail server configuration is required. See the e-mail task for the configuration options.

History configuration

Customizing the configuration of history storage is optional. This allows you to tweak settings that influence the

history capabilities of the engine. See history configuration for more details.

<property name="history" value="audit" />

Exposing configuration beans in expressions and

scripts

By default, all beans that you specify in the activiti.cfg.xml configuration or in your own Spring configuration

file are available to expressions and in the scripts. If you want to limit the visibility of beans in your configuration file,

you can configure a property called beans in your process engine configuration. The beans property in

ProcessEngineConfiguration is a map. When you specify that property, only beans specified in that map

will be visible to expressions and scripts. The exposed beans will be exposed with the names as you specify in that

map.

Deployment cache configuration

All process definition are cached (after they're parsed) to avoid hitting the database every time a process definition is

needed and because process definition data doesn't change. By default, there is no limit on this cache. To limit the

process definition cache, add following property

<property name="processDefinitionCacheLimit" value="10" />

Setting this property will swap the default hashmap cache with a LRU cache that has the provided hard limit. Of

course, the 'best' value of this property depends on the total amount of process definitions stored and the number of

process definitions actually used at runtime by all the runtime process instances.

You can also inject your own cache implementation. This must be a bean that implements the

org.activiti.engine.impl.persistence.deploy.DeploymentCache interface:

<property name="processDefinitionCache">

 <bean class="org.activiti.MyCache" />

</property>

There is a similar property called knowl edgeBaseCacheLimit and knowledgeBaseCache for configuring

the rules cache. This is only needed when you use the rules task in your processes.

Logging

As of Activiti 5.12, SLF4J is used as logging framework, replacing the previous used java.util.logging. All logging

(activiti, spring, mybatis, ...) is routed through SLF4J and allows for selecting the logging-implementation of your

choice.

By default no SFL4J-binding jar is present in the activiti-engine dependencies, this should be added in your

project in order to use the logging framework of your choice. If no implementation jar is added, SLF4J will use a

NOP-logger, not logging anything at all, other than a warning that nothing will be logged. For more info on these

bindings http://www.slf4j.org/codes.html#StaticLoggerBinder.

With Maven, add for example a dependency like this (here using log4j), note that you still need to add a version:

<dependency>

 <groupId>org.slf4j</groupId>

 <artifactId>slf4j - log4j12</artifactId>

</dependency>

The activiti-explorer and activiti-rest webapps are configured to use Log4j-binding. Log4j is also used when running

the tests for all the activiti-* modules.

Important note when using a container with commons-logging in the classpath: In order to route the spring-

logging through SLF4J, a bridge is used (see http://www.slf4j.org/legacy.html#jclOverSLF4J). If your container

http://www.slf4j.org/codes.html#StaticLoggerBinder
http://www.slf4j.org/legacy.html#jclOverSLF4J

provides a commons-logging implementation, please follow directions on this page:

http://www.slf4j.org/codes.html#release to ensure stability.

Example when using Maven (version omitted):

<dependency>

 <groupId>org.slf4j</groupId>

 <artifactId>jcl - over - slf4j</artifactId>

</dependency>

Mapped Diagnostic Contexts

As of version 5.13, activiti supports Mapped Diagnostic Contexts feature of sl4j. These basic information are passed

to the underlying logger along with what is going to be logged:

¶ processDefinition Id as mdcProcessDefinitionID

¶ processInstance Id as mdcProcessInstanceID

¶ execution Id as mdcexecutionId

None of these information are logged by default. The logger can be configured to show them in desired format, extra

to the usual logged messages. For example in log4j the following sample layout definition causes the logger to show

the above mentioned information:

 log4j.appender.consoleA ppender.layout.ConversionPattern

=ProcessDefinitionId=%X{mdcProcessDefinitionID}

executionId=%X{mdcExecutionId} mdcProcessInstanceID=%X{mdcProcessInstanceID}

mdcBusinessKey=%X{mdcBusinessKey} %m%n"

This is useful where the systems are mission critical and logs should be seriously checked, by means of a log

analyzer for example.

Event handlers

An event mechanism has been introduced in Activiti 5.15. It allows you to get notified when various events occur

within the engine. Take a look at all supported event types for an overview of the events available.

http://www.slf4j.org/codes.html#release

It's possible to register a listener for certain types of events as opposed to getting notified when any type of event is

dispatched. You can either add engine-wide event listeners through the configuration, add engine-wide event

listeners at runtime using the API or add event-listeners to specific process definitions in the BPMN XML.

All events dispatched are a subtype of org.activiti.engine.delegate.event.ActivitiEvent . The

event exposes (if available) the type , executionId , processInstanceId and processDefinitionId .

Certain events contain additional context related to the event that occurred, additional information about additional

playload can be found in the list of all supported event types.

Event listener implementation

The only requirement an event-listener has, is to implement

org.activiti.engine.delegate.event.ActivitiEventListener . Below is an example

implementation of a listener, which outputs all events received to the standard-out, with exception of events related to

job-execution:

public class MyEventListener implements ActivitiEventListener {

 @Override

 public void onEvent(ActivitiEvent event) {

 switch (event.getType()) {

 case JOB_EXECUTION_SUCCESS:

 System.out.println("A job well done!");

 break;

 case JOB_EXECUTION_FAILURE:

 System.out.println("A job has failed...");

 break;

 default:

 System.out.println("Event received: " + event.getType());

 }

 }

 @Override

 public boolean isFailOnException() {

 // The logic in the onEvent method of this listener is not critical,

exceptions

 // can be ignored if logging fails...

 return false;

 }

}

The isFailOnException() method determines the behaviour in case the onEvent(..) method throws an

exception when an event is dispatched. In case false is returned, the exception is ignored. When true is

returned, the exception is not ignored and bubbles up, effectively failing the current ongoing command. In case the

event was part of an API-call (or any other transactional operation, eg. job-execution), the transaction will be rolled

back. In case the behaviour in the event-listener is not business-critical, it's recommended to return false .

There are a few base implementations provided by activiti to facilitate common usecases of event-listeners. These

can be used as base-class or as an example listener implementation:

¶ org.activiti.engine.delegate.event.BaseEntityEventListener: An event-listener base-class that can be

used to listen for entity-related events for a specific type of entity or for all entities. It hides away the type-

checking and offers 4 methods that should be overridden: onCreate(..) , onUpdate(..) and

onDelete(..) when an entity is created, updated or deleted. For all other entity-related events, the

onEntityEvent(..) is called.

Configuration and setup

If event-listener is configured in the process engine configuration, it will be active when the process engine starts and

will remain active after subsequent reboots of the engine.

The property eventListeners expects a list of

org.activiti.engine.delegate.event.ActivitiEventListener instances. As usual, you can

either declare an inline bean definition or use a ref to an existing bean instead. The snippet below adds an event-

listener to the configuration, that is notified when any event is dispatched, regardless of it's type:

<bean id="processEngineConfiguration"

class="org.activiti.engine.impl.cfg.Standal oneProcessEngineConfiguration">

 ...

 <property name="eventListeners">

 <list>

 <bean class="org.activiti.engine.example.MyEventListener" />

 </list>

 </property>

</bean>

To get notified when certain types of events get dispatched, use the typedEventListeners property, which

expects a map. The key of a map-entry is a comma-separated list of event-names (or a single event-name). The

value of a map-entry is a list of org.acti viti.engine.delegate.event.ActivitiEventListener

instances. The snippet below adds an event-listener to the configuration, that is notified when a job execution was

successful or failed:

<bean id="processEngineConfiguration"

class="org.activiti.engine.im pl.cfg.StandaloneProcessEngineConfiguration">

 ...

 <property name="typedEventListeners">

 <map>

 <entry key="JOB_EXECUTION_SUCCESS,JOB_EXECUTION_FAILURE" >

 <list>

 <bean class="org.activiti.engine.example.MyJobEventL istener" />

 </list>

 </entry>

 </map>

 </property>

</bean>

The order of dispatching events is determined on the order the listeners were added. First, all normal event-listeners

are called (eventListeners property) in the order they are defined in the list . After that, all typed event

listeners (typedEventListeners properties) are called, if an event of the right type is dispatched.

Adding listeners at runtime

It's possible to add and remove additional event-listeners to the engine by using the API (RuntimeService):

/**

 * Adds an event - listener which will be notified of ALL events by the

dispatcher.

 * @param listenerToAdd the listener to add

 */

void addEventListener(ActivitiEventListener listenerToAdd);

/**

 * Adds an event - listener which will only be notified when an event occurs,

which type is in the given types.

 * @param listenerToAdd the listener to add

 * @param types types of events the listener should be notified for

 */

void addEventListener(ActivitiE ventListener listenerToAdd,

ActivitiEventType... types);

/**

 * Removes the given listener from this dispatcher. The listener will no

longer be notified,

 * regardless of the type(s) it was registered for in the first place.

 * @param listenerToRemove lis tener to remove

 */

 void removeEventListener(ActivitiEventListener listenerToRemove);

Please note that the listeners added at runtime are not retained when the engine is rebooted.

Adding listeners to process definitions

It's possible to add listeners to a specific process-definition. The listeners will only be called for events related to the

process definition and to all events related to process instances that are started with that specific process definition.

The listener implementations can be defined using a fully qualified classname, an expression that resolves to a bean

that implements the listener interface or can be configured to throw a message/signal/error BPMN event.

Listeners executing user-defined logic

The snippet below adds 2 listeners to a process-definition. The first listener will receive events of any type, with a

listener implementation based on a fully-qualified class name. The second listener is only notified when a job is

successfully executed or when it failed, using a listener that has been defined in the beans property of the process

engine configuration.

<process id="testEventListeners">

 <extensionElements>

 <activiti:eventListener class="org.activiti.engine.test.MyEventListener"

/>

 <activiti:eventListener delegateExpression="${testEventListener}"

events="JOB_EXECUTION_SUCCESS,JOB_EXECUTION_FAILURE" />

 </extensionElements>

 ...

</process>

For events related to entities, it's also possible to add listeners to a process-definition that get only notified when

entity-events occur for a certain entity type. The snippet below shows how this can be achieved. It can be used along

for ALL entity-events (first example) or for specific event types only (second example).

<process id ="testEventListeners">

 <extensionElements>

 <activiti:eventListener class="org.activiti.engine.test.MyEventListener"

entityType="task" />

 <activiti:eventListener delegateExpression="${testEventListener}"

events="ENTITY_CREATED" entityType="task" / >

 </extensionElements>

 ...

</process>

For events related to entities, it's also possible to add listeners to a process-definition that get notified only entity-

events occur for a certain entity type. The snippet below shows how this can be done. It can be used along for ALL

entity-events (first example) or for specific event types only (second example).

<process id="testEventListeners">

 <extensionElements>

 <activiti:eventListener class="org.activiti.engine.test.MyEventListener"

entityType="task" />

 <activiti:eventListener delegateExpression="${testEventListener}"

events="ENTITY_CREATED" entityType="task" />

 </extensionElements>

 ...

</process >

Supported values for the entityType are: attachment , comment , execution ,identity - link , job ,

process - instance , process - definition , task .

Listeners throwing BPMN events

[EXPERIMENTAL]

Another way of handling events being dispatched is to throw a BPMN event. Please bare in mind that it only makes

sense to throw BPMN-events with certain kinds of activiti event types. For example, throwing a BPMN event when the

process-instance is deleted will result in an error. The snippet below shows how to throw a signal inside process-

instance, throw a signal to an external process (global), throw a message-event inside the process-instance and

throw an error-event inside the process-instance. Instead of using the class or delegateExpression , the

attribute throwEvent is used, along with an additional attribute, specific to the type of event being thrown.

<process id="testEventListeners">

 <extensionElements>

 <activiti:eventListener throwEvent="sig nal" signalName="My signal"

events="TASK_ASSIGNED" />

 </extensionElements>

</process>

<process id="testEventListeners">

 <extensionElements>

 <activiti:eventListener throwEvent="globalSignal" signalName="My signal"

events="TASK_ASSIGNED" />

 </extensionElements>

</process>

<process id="testEventListeners">

 <extensionElements>

 <activiti:eventListener throwEvent="message" messageName="My message"

events="TASK_ASSIGNED" />

 </extensionElements>

</process>

<process id="testEventListeners">

 <extensionElements>

 <activiti:eventListener throwEvent="error" errorCode="123"

events="TASK_ASSIGNED" />

 </extensionElements>

</process>

If additional logic is needed to decide whether or not to throw the BPMN-event, it's possible to extend the listener-

classes provided by Activiti. By overriding the isValidEvent(ActivitiEvent event) in your subclass,

BPMN-event throwing can be prevented. The classes involved are

org.activiti.engine.test.api.event.SignalThrowingEventListenerTest ,

org.activiti.engin e.impl.bpmn.helper.MessageThrowingEventListener and

org.activiti.engine.impl.bpmn.helper.ErrorThrowingEventListener .

Notes on listeners on a process-definition

¶ Event-listeners can only be declared on the process element, as a child-element of the

extension Elements . Listeners cannot be defined on individual activities in the process.

¶ Expressions used in the delegateExpression do not have access to the execution-context, as other

expressions (eg. in gateways) have. They can only reference beans defined in the beans property of the

process engine configuration or when using spring (and the beans property is absent) to any spring-bean

that implements the listener interface.

¶ When using the class attribute of a listener, there will only be a single instance of that class created. Make

sure the listener implementations do not rely on member-fields or ensure safe usage from multiple

threads/contexts.

¶ When an illegal event-type is used in the events attribute or illegal throwEvent value is used, an

exception will be thrown when the process-definition is deployed (effectively failing the deployment). When

an illegal value for class or delegateExecution is supplied (either unexisting class, unexisting bean

referenced or delegate not implementing listener interface), an exception will be thrown when the process is

started (or when the first valid event for that process-definition is dispatched to the listener). Make sure the

referenced classes are on the classpath and that the expressions resolve to a valid instance.

Dispatching events through API

We opened up the event-dispatching mechanism through the API, to allow you to dispatch custom events to any

listeners that are registered in the engine. It's recommended (although not enforced) to only dispatch

ActivitiEvents with type CUSTOM. Dispatching the event can be done using the RuntimeService :

/**

 * Dispatches the given event to any listeners that are registered.

 * @param event event to dispatch.

 *

 * @throws ActivitiException if an exception occurs when dispatch ing the

event or when the {@link ActivitiEventDispatcher}

 * is disabled.

 * @throws ActivitiIllegalArgumentException when the given event is not

suitable for dispatching.

 */

 void dispatchEvent(ActivitiEvent event);

Supported event types

Listed below are all event types that can occur in the engine. Each type corresponds to an enum value in the

org.activiti.engine.delegate.event.ActivitiEventType .

Table 3.2. Supported events

Event name Description Event classes

ENGINE_CREATED

The process-engine this

listener is attached to, has

been created and is ready

for API-calls.

org.activiti...ActivitiEvent

ENGINE_CLOSED

The process-engine this

listener is attached to, has

been closed. API-calls to

the engine are no longer

possible.

org.activiti...ActivitiEvent

ENTITY_CREATED

A new entity is created.

The new entity is

contained in the event.

org.activiti...ActivitiEntityEvent

ENTITY_INITIALIZED

A new entity has been

created and is fully

initialized. If any children

are created as part of the

creation of an entity, this

event will be fired AFTER

the create/initialisation of

the child entities as

opposed to the

ENTITY_CREATE event.

org.activiti...ActivitiEntityEvent

ENTITY_UPDATED

An existing is updated.

The updated entity is

contained in the event.

org.activiti...ActivitiEntityEvent

ENTITY_DELETED

An existing entity is

deleted. The deleted entity

is contained in the event.

org.activiti...ActivitiEntityEvent

Event name Description Event classes

ENTITY_SUSPENDED

An existing entity is

suspended. The

suspended entity is

contained in the event. Will

be dispatched for

ProcessDefinitions,

ProcessInstances and

Tasks.

org.activiti...ActivitiEntityEvent

ENTITY_ACTIVATED

An existing entity is

activated. The activated

entity is contained in the

event. Will be dispatched

for ProcessDefinitions,

ProcessInstances and

Tasks.

org.activiti...ActivitiEntityEvent

JOB_EXECUTION_SUCCESS

A job has been executed

successfully. The event

contains the job that was

executed.

org.activiti. ..ActivitiEntityEvent

JOB_EXECUTION_FAILURE

The execution of a job has

failed. The event contains

the job that was executed

and the exception.

org.activiti...ActivitiEntityEvent and

org.activiti...ActivitiExceptionEvent

JOB_RETRIES_DECREMENTED

The number of job retries

have been decremented

due to a failed job. The

event contains the job that

was updated.

org.activiti...ActivitiEntityEvent

TIMER_FIRED

A timer has been fired.

The event contains the job

that was executed?

org.activiti...ActivitiEntityEvent

JOB_CANCELED

A job has been canceled.

The event contains the job

that was canceled. Job

can be canceled by API

call, task was completed

and associated boundary

timer was canceled, on the

org.activiti...ActivitiEntityEv ent

Event name Description Event classes

new process definition

deployment.

ACTIVITY_STARTED
An activity is starting to

execute
org.activiti...ActivitiActivityEvent

ACTIVITY_COMPLETED
An activity is completed

successfully
org.activiti...ActivitiActivityEvent

ACTIVITY_TIMOUT

An activity is interupted

due to an interrupting timer

boundary event.

org.activiti...ActivitiActivityEvent

ACTIVITY_SIGNALED
An activity received a

signal
org.activiti...ActivitiSignalEvent

ACTIVITY_MESSAGE_RECEIVED

An activity received a

message. Dispatched

before the activity receives

the message. When

received, a

ACTIVITY_SIGNAL or

ACTIVITY_STARTED

will be dispatched for this

activity, depending on the

type (boundary-event or

event-subprocess start-

event)

org.activiti...ActivitiMessageEvent

ACTIVITY_ERROR_RECEIVED

An activity has received an

error event. Dispatched

before the actual error has

been handled by the

activity. The event's

activityId contains a

reference to the error-

handling activity. This

event will be either

followed by a

ACTIVITY_SIGNALLED

event or

ACTIVITY_COMPLETE

for the involved activity, if

org.activiti...ActivitiErrorEvent

Event name Description Event classes

the error was delivered

successfully.

UNCAUGHT_BPMN_ERROR

An uncaught BPMN error

has been thrown. The

process did not have any

handlers for that specific

error. The event's

activityId will be

empty.

org.activiti...ActivitiErrorEvent

ACTIVITY_COMPENSATE

An activity is about to be

compensated. The event

contains the id of the

activity that is will be

executed for

compensation.

org.activiti...ActivitiActivityEvent

VARIABLE_CREATED

A variable has been

created. The event

contains the variable

name, value and related

execution and task (if any).

org.activiti...ActivitiVariableEvent

VARIABLE_UPDATED

An existing variable has

been updated. The event

contains the variable

name, updated value and

related execution and task

(if any).

org.activiti...ActivitiVariableEvent

VARIABLE_DELETED

An existing variable has

been deleted. The event

contains the variable

name, last known value

and related execution and

task (if any).

org.activiti...A ctivitiVariableEvent

TASK_ASSIGNED

A task has been assigned

to a user. The event

contains the task

org.activiti...ActivitiEntityEvent

TASK_CREATED

A task has been created.

This is dispatched after the

ENTITY_CREATE event.

org.activiti...ActivitiEntityEvent

Event name Description Event classes

In case the task is part of a

process, this event will be

fired before the task

listeners are executed.

TASK_COMPLETED

A task has been

completed. This is

dispatched before the

ENTITY_DELETE event.

In case the task is part of a

process, this event will be

fired before the process

has moved on and will be

followed by a

ACTIVITY_COMPLETE

event, targeting the activity

that represents the

completed task.

org.activiti...ActivitiEntityEvent

PROCESS_COMPLETED

A process has been

completed. Dispatched

after the last activity

ACTIVITY_COMPLETED

event. Process is

completed when it reaches

state in which process

instance does not have

any transition to take.

org.activiti...ActivitiEntityEvent

MEMBERSHIP_CREATED

A user has been added to

a group. The event

contains the id's of the

user and group involved.

org.activiti...ActivitiMembershipEvent

MEMBERSHIP_DELETED

A user has been removed

from a group. The event

contains the id's of the

user and group involved.

org.activiti...A ctivitiMembershipEvent

MEMBERSHIPS_DELETED

All members will be

removed from a group.

The event is thrown before

the members are removed,

org.activiti...ActivitiMembershipEvent

Event name Description Event classes

so they are still accessible.

No individual

MEMBERSHIP_DELETED

events will be thrown if all

members are deleted at

once, for performance

reasons.

All ENTITY_* events are related to entities inside the engine. The list below show an overview of what entity-events

are dispatched for which entities:

¶ ENTITY_CREATED, ENTITY_INITIALIZED, ENTITY_DELETED : Attachment, Comment,

Deployment, Execution, Group, IdentityLink, Job, Model, ProcessDefinition, ProcessInstance, Task, User.

¶ ENTITY_UPDATED: Attachment, Deployment, Execution, Group, IdentityLink, Job, Model,

ProcessDefinition, ProcessInstance, Task, User.

¶ ENTITY_SUSPENDED, ENTITY_ACTIVATED: ProcessDefinition, ProcessInstance/Execution, Task.

Additional remarks

Only listeners are notified in the engine the events are dispatched from. So in case you have different engines -

running against the same database - only events that originated in the engine the listener is registered for, are

dispatched to that listener. The events that occur in the other engine are not dispatched to the listeners, regardless of

the fact they are running in the same JVM or not.

Certain event-types (related to entities) expose the targetted entity. Depending on the type or event, these entities

cannot be updated anymore (eg. when the entity is deleted). If possible, use the EngineServices exposed by the

event to interact in a safe way with the engine. Even then, you need to be cautious with updates/operations on

entities that are involved in the dispatched event.

No entity-events are dispatched related to history, as they all have a runtime-counterpart which have their events

dispatched.

Chapter 4. The Activiti API

Table of Contents

The Process Engine API and services

Exception strategy

Working with the Activiti services

Deploying the process

Starting a process instance

Completing tasks

Suspending and activating a process

Further reading

Query API

Expressions

Unit testing

Debugging unit tests

The process engine in a web application

The Process Engine API and services

The engine API is the most common way of interacting with Activiti. The central starting point is the

ProcessEngine , which can be created in several ways as described in the configuration section. From the

ProcessEngine, you can obtain the various services that contain the workflow/BPM methods. ProcessEngine and the

services objects are thread safe. So you can keep a reference to 1 of those for a whole server.

ProcessEngine processEngine = ProcessEngines.getDefaultProcessEngine();

RuntimeService runtimeService = processEngine.getRuntimeService();

RepositorySe rvice repositoryService = processEngine.getRepositoryService();

TaskService taskService = processEngine.getTaskService();

ManagementService managementService = processEngine.getManagementService();

IdentityService identityService = processEngine.getIdentit yService();

HistoryService historyService = processEngine.getHistoryService();

FormService formService = processEngine.getFormService();

ProcessEngines.getDefaultProcessEngine() will initialize and build a process engine the first time it is

called and afterwards always return the same process engine. Proper creation and closing of all process engines can

be done with ProcessEngines.init() and ProcessEngines.destroy() .

The ProcessEngines class will scan for all activiti.cfg.xml and activiti - context.xml files. For all

activiti.cfg.xml files, the process engine will be built in the typical Activiti way:

ProcessEngineConfiguration.createProcessEngineConfigurationFromInputStream(in

putStream).buildProcessEngine() . For all activiti - context.xml files, the process engine will be

built in the Spring way: First the Spring application context is created and then the process engine is obtained from

that application context.

All services are stateless. This means that you can easily run Activiti on multiple nodes in a cluster, each going to the

same database, without having to worry about which machine actually executed previous calls. Any call to any

service is idempotent regardless of where it is executed.

The RepositoryService is probably the first service needed when working with the Activiti engine. This service offers

operations for managing and manipulating deployments and process definitions . Without going into

much detail here, a process definition is a Java counterpart of BPMN 2.0 process. It is a representation of the

structure and behaviour of each of the steps of a process. A deployment is the unit of packaging within the Activiti

engine. A deployment can contain multiple BPMN 2.0 xml files and any other resource. The choice of what is

included in one deployment is up to the developer. It can range from a single process BPMN 2.0 xml file to a whole

package of processes and relevant resources (for example the deployment 'hr-processes' could contain everything

related to hr processes). The RepositoryService allows to deploy such packages. Deploying a deployment

means it is uploaded to the engine, where all processes are inspected and parsed before being stored in the

database. From that point on, the deployment is known to the system and any process included in the deployment

can now be started.

Furthermore, this service allows to

¶ query on deployments and process definitions known to the engine.

¶ Suspend and activate deployments as a whole or specific process definitions. Suspending means no further

operations can be done on them, while activation is the opposite operation.

¶ Retrieve various resources such as files contained within the deployment or process diagrams that were

auto generated by the engine.

¶ Retrieve a pojo version of the process definition which can be used to introspect the process using Java

rather than xml.

While the RepositoryService is rather about static information (ie. data that doesn't change, or at least not a

lot), the RuntimeService is quite the opposite. It deals with starting new process instances of process definitions. As

said above, a process definition defines the structure and behaviour of the different steps in a process. A

process instance is one execution of such a process definition. For each process definition there typically are many

instances running at the same time. The RuntimeService also is the service which is used to retrieve and store

process variables . This is data which is specific to the given process instance and can be used by various

constructs in the process (eg. an exclusive gateway often uses process variables to determine which path is chosen

to continue the process). The Runtimeservice also allows to query on process instances and executions.

Executions are a representation of the 'token' concept of BPMN 2.0. Basically an execution is a pointer pointing

to where the process instance currently is. Lastly, the RuntimeService is used whenever a process instance is

waiting for an external trigger and the process needs to be continued. A process instance can have various wait

states and this service contains various operations to 'signal' the instance that the external trigger is received and

the process instance can be continued.

Tasks that need to be performed by actual human users of the system are core to a BPM engine such as Activiti.

Everything around tasks is grouped in the TaskService, such as

¶ Querying tasks assigned to users or groups

¶ Creating new standalone tasks. These are tasks that are not related to a process instances.

¶ Manipulating to which user a task is assigned or which users are in some way involved with the task.

¶ Claiming and completing a task. Claiming means that someone decided to be the assignee for the task,

meaning that this user will complete the task. Completing means 'doing the work of the tasks'. Typically this

is filling in a form of sorts.

The IdentityService is pretty simple. It allows the management (creation, update, deletion, querying, ...) of groups

and users. It is important to understand that Activiti actually doesn't do any checking on users at runtime. For

example, a task could be assigned to any user, but the engine does not verify if that user is known to the system.

This is because the Activiti engine can also used in conjunction with services such as ldap, active directory, etc.

The FormService is an optional service. Meaning that Activiti can perfectly be used without it, without sacrificing any

functionality. This service introduces the concept of a start form and a task form. A start form is a form that is shown

to the user before the process instance is started, while a task form is the form that is displayed when a user wants to

complete a form. Activiti allows to define these forms in the BPMN 2.0 process definition. This service exposes this

data in an easy way to work with. But again, this is optional as forms don't need to be embedded in the process

definition.

The HistoryService exposes all historical data gathered by the Activiti engine. When executing processes, a lot of

data can be kept by the engine (this is configurable) such as process instance start times, who did which tasks, how

long it took to complete the tasks, which path was followed in each process instance, etc. This service exposes

mainly query capabilities to access this data.

The ManagementService is typically not needed when coding custom application using Activiti. It allows to retrieve

information about the database tables and table metadata. Furthermore, it exposes query capabilities and

management operations for jobs. Jobs are used in Activiti for various things such as timers, asynchronous

continuations, delayed suspension/activation, etc. Later on, these topics will be discussed in more detail.

For more detailed information on the service operations and the engine API, see the javadocs.

Exception strategy

The base exception in Activiti is the org.activiti.engine.ActivitiException , an unchecked

exception. This exception can be thrown at all times by the API, but 'expected' exceptions that happen in specific

methods are documented in the the javadocs. For example, an extract from TaskService :

/**

 * Called when the task is successfully executed.

 * @param taskId the id of the task to complete, cannot be null.

 * @throws ActivitiObjectNotFoundException when no task exists with the given

id.

 */

 void complete(String taskId);

In the example above, when an id is passed for which no task exists, an exception will be thrown. Also, since the

javadoc explicitly states that taskId cannot be null, an ActivitiIllegalArgumentException will be

thrown when null is passed.

Even though we want to avoid a big exception hierarchy, the following subclasses were added which are thrown in

specific cases. All other errors that occur during process-execution or API-invokation that don't fit into the possible

exceptions below, are throw as regular ActivitiExceptions s.

¶ ActivitiWrongDbException : Thrown when the Activiti engine discovers a mismatch between the

database schema version and the engine version.

¶ ActivitiOptimisticLockingException : Thrown when an optimistic locking occurs in the data

store caused by concurrent access of the same data entry.

¶ ActivitiClassLoadingException : Thrown when a class requested to load was not found or when

an error occurred while loading it (e.g. JavaDelegates, TaskListeners, ...).

¶ ActivitiObjectNotFoundException: Thrown when an object that is requested or actioned on

does not exist.

¶ ActivitiIllegalArgumentException: An exception indicating that an illegal argument has

been supplied in an Activiti API-call, an illegal value was configured in the engine's configuration or an illegal

value has been supplied or an illegal value is used in a process-definition.

¶ ActivitiTaskAlreadyClaimedException: Thrown when a task is already

claimed, when the taskService.claim(...) is called. .

../javadocs/index.html
../javadocs/index.html

Working with the Activiti services

As described above, the way to interact with the Activiti engine is through the services exposed by an instance of the

org.activiti.engine.ProcessEngine class. The following code snippets assume you have a working

Activiti environment, ie. you have access to a valid org.activiti.engine.ProcessEngine . If you simply

want to try out the code below, you can download or clone the Activiti unit test template, import it in your IDE and add

a testUserguideCode() method to the org.ac tiviti.MyUnitTest unit test.

The end goal of this little tutorial will be to have a working business process which mimics a simplistic vacation

request process at a company:

Deploying the process

Everything that is related to 'static' data (such as process definitions) are accessed through the RepositoryService.

Conceptually, every such static piece of data is content of the 'repository' of the Activiti engine.

Create a new xml file VacationRequest.bpmn20.xml in the

src/test/resources/org/activiti/test resource folder (or anywhere else if you're not using the unit

test template) with the following content. Note that this section won't explain the xml constructs being used in the

example above. Please read the bpmn 2.0 chapter to become familiar with these constructs first if needed.

<?xml version="1.0" encoding="UTF - 8" ?>

https://github.com/Activiti/activiti-unit-test-template

<definitions id="definitions"

 targetNamespace="http://activiti.org/bpmn20"

 xmlns="http://www.omg.org/spec/BPMN/20100524/MODEL"

 xmlns:xsi="http://www.w3.org/2001/XML Schema- instance"

 xmlns:activiti="http://activiti.org/bpmn">

 <process id="vacationRequest" name="Vacation request">

 <startEvent id="request" activiti:initiator="employeeName">

 <extensionElements>

 <activiti:formProperty id="numberOfDays" name="Number of days"

type="long" value="1" required="true"/>

 <activiti:formProperty id="startDate" name="First day of holiday (dd -

MM- yyy)" datePattern="dd - MM- yyyy hh:mm" type="date" required="true" />

 <activiti:formPrope rty id="vacationMotivation" name="Motivation"

type="string" />

 </extensionElements>

 </startEvent>

 <sequenceFlow id="flow1" sourceRef="request" targetRef="handleRequest" />

 <userTask id="handleRequest" name="Handle vacation request" >

 <documentation>

 ${employeeName} would like to take ${numberOfDays} day(s) of vacation

(Motivation: ${vacationMotivation}).

 </documentation>

 <extensionElements>

 <activiti:formProperty id="vacationApproved" name="Do you approve

this vacation" type="enum" required="true">

 <activiti:value id="true" name="Approve" />

 <activiti:value id="false" name="Reject" />

 </activiti:formProperty>

 <activiti:formProperty id="managerMotivation" name="Motivation"

type="string" />

 </extensionElements>

 <potentialOwner>

 <resourceAssignmentExpression>

 <formalExpression>management</formalExpression>

 </resourceAssignme ntExpression>

 </potentialOwner>

 </userTask>

 <sequenceFlow id="flow2" sourceRef="handleRequest"

targetRef="requestApprovedDecision" />

 <exclusiveGateway id="requestApprovedDecision" name="Request approved?"

/>

 <sequenceFl ow id="flow3" sourceRef="requestApprovedDecision"

targetRef="sendApprovalMail">

 <conditionExpression xsi:type="tFormalExpression">${vacationApproved ==

'true'}</conditionExpression>

 </sequenceFlow>

 <task id="sendApprovalMail" name="Send confirmation e - mail" />

 <sequenceFlow id="flow4" sourceRef="sendApprovalMail" targetRef="theEnd1"

/>

 <endEvent id="theEnd1" />

 <sequenceFlow id="flow5" sourceRef="requestApprovedDecision"

targetRef="adjustVacationRequestTask">

 <conditionExpression xsi:type="tFormalExpression">${vacationApproved ==

'false'}</conditionExpression>

 </sequenceFlow>

 <userTask id="adjustVacationRequestTask" name="Adjust vacation request">

 <documentation>

 Your manager has disap proved your vacation request for

${numberOfDays} days.

 Reason: ${managerMotivation}

 </documentation>

 <extensionElements>

 <activiti:formProperty id="numberOfDays" name="Number of days"

value="${numberOfDays}" type="long" required ="true"/>

 <activiti:formProperty id="startDate" name="First day of holiday (dd -

MM- yyy)" value="${startDate}" datePattern="dd - MM- yyyy hh:mm" type="date"

required="true" />

 <activiti:formProperty id="vacationMotivation" name="Motivation"

valu e="${vacationMotivation}" type="string" />

 <activiti:formProperty id="resendRequest" name="Resend vacation

request to manager?" type="enum" required="true">

 <activiti:value id="true" name="Yes" />

 <activiti:value id="false" name ="No" />

 </activiti:formProperty>

 </extensionElements>

 <humanPerformer>

 <resourceAssignmentExpression>

 <formalExpression>${employeeName}</formalExpression>

 </resourceAssignmentExpression>

 </humanPerformer >

 </userTask>

 <sequenceFlow id="flow6" sourceRef="adjustVacationRequestTask"

targetRef="resendRequestDecision" />

 <exclusiveGateway id="resendRequestDecision" name="Resend request?" />

 <sequenceFlow id="flow7" sourceRef="resendRequestDecision"

targetRef="handleRequest">

 <conditionExpression xsi:type="tFormalExpression">${resendRequest ==

'true'}</conditionExpression>

 </sequenceFlow>

 <sequenceFlow id="flow8" sourceRef=" resendRequestDecision"

targetRef="theEnd2">

 <conditionExpression xsi:type="tFormalExpression">${resendRequest ==

'false'}</conditionExpression>

 </sequenceFlow>

 <endEvent id="theEnd2" />

 </process>

</definitions>

To make this process known to the Activiti engine, we must 'deploy' it first. Deploying means that the engine will

parse the BPMN 2.0 xml to something executable and a new database record will be added for each process

definition included in the 'deployment'. This way, when the engine reboots, it will still know all of the 'deployed'

processes:

ProcessEngine processEngine = ProcessEngines.getDefaultProcessEngine();

RepositoryService repositoryService = processEngine.getRepositoryService();

repositoryService.cr eateDeployment()

 .addClasspathResource("org/activiti/test/VacationRequest.bpmn20.xml")

 .deploy();

Log.info("Number of process definitions: " +

repositoryService.createProcessDefinitionQuery().count());

Read more about deployment in the deployment chapter.

Starting a process instance

After deploying the process definition to the Activiti engine, we can start new process instances from it. For each

process definition, there are typically many process instances. The process definition is the 'blueprint', while a

process instance is a runtime execution of it.

Everything related to the runtime state of processes can be found in the RuntimeService. There are various way to

start a new process instance. In the following snippet, we use the key we defined in the process definition xml to start

the process instance. We're also providing some process variables at process instance start, because the description

of the first user task will use these in its expressions. Process variables are commonly used because they give

meaning to the process instances for a certain process definition. Typically, the process variables are what make

process instances differ from one another.

Map<String, Object> variables = new HashMap<String, Object>();

variables.put("employeeName", "Kermit");

variables.put("numberOfDays", new Integer(4));

variables.put("vacationMotivation", "I'm really tired!");

RuntimeService ru ntimeService = processEngine.getRuntimeService();

ProcessInstance processInstance =

runtimeService.startProcessInstanceByKey("vacationRequest", variables);

// Verify that we started a new process instance

Log.info("Number of process instances: " +

r untimeService.createProcessInstanceQuery().count());

Completing tasks

When the process starts, the first step will be a user task. This is a step that must be performed by a user of the

system. Typically, such a user will have an 'inbox of tasks' which lists all the tasks that need to be done by this user.

Following code snippet shows how such a query might be performed:

// Fetch all tasks for the management group

TaskService taskService = processEngine.getTaskService();

List<Task> tasks =

taskService.createTaskQuery().taskCandidateGroup("management").list();

for (Task task : tasks) {

 Log.info("Task available: " + task.getName());

}

To continue the process instance, we need to finish this task. For the Activiti engine, this means you need to

complete the task. Following snippet shows how this is done:

Task task = tasks.get(0);

Map<String, Object> taskVariables = new HashMap<S tring, Object>();

taskVariables.put("vacationApproved", "false");

taskVariables.put("managerMotivation", "We have a tight deadline!");

taskService.complete(task.getId(), taskVariables);

The process instance will now continue to the next step. In this example, the next step allows the employee to

complete a form that adjusts their original vacation request. The employee can resubmit the vacation request which

will cause the process to loop back to the start task.

Suspending and activating a process

It's possible to suspend a process definition. When a process definition is suspended, new process instance can't be

created (an exception will be thrown). Suspending the process definition is done through the

RepositoryService :

reposito ryService.suspendProcessDefinitionByKey("vacationRequest");

try {

 runtimeService.startProcessInstanceByKey("vacationRequest");

} catch (ActivitiException e) {

 e.printStackTrace();

}

To reactivate a process definition, simply call one of the

repositoryService.activateProcessDefinitionXXX methods.

It's also possible to suspend a process instance. When suspended, the process cannot be continued (e.g. completing

a task throws an exception) and no jobs (such as timers) will executed. Suspending a process instance can be done

by calling the runtimeService.suspendProcessInstance method. Activating the process instance again

is done by calling the runtimeService.activateProcessInstanceXXX methods.

Further reading

We've barely scratched the surface in the previous sections regarding Activiti functionality. We will expand these

sections further in the future with additional coverage of the Activiti API. Of course, as with any open source project,

the best way to learn is to inspect the code and read the Javadocs!

Query API

There are two ways of querying data from the engine: The query API and native queries. The Query API allows to

program completely typesafe queries with a fluent API. You can add various conditions to your queries (all of which

are applied together as a logical AND) and precisely one ordering. The following code shows an example:

 List<Task> tasks = taskService.createTaskQuery()

 .taskAssignee("kermit")

 .processVariableValueEquals("orderId", "0815")

 .orderByDueDate().asc()

 .list();

Sometimes you need more powerful queries, e.g. queries using an OR operator or restrictions you can not express

using the Query API. For these cases, we introduced native queries, which allow you to write your own SQL queries.

The return type is defined by the Query object you use and the data is mapped into the correct objects, e.g. Task,

ProcessInstance, Execution, etc.... Since the query will be fired at the database you have to use table and column

names as they are defined in the database; this requires some knowledge about the internal data structure and it is

recommended to use native queries with care. The table names can be retrieved via the API to keep the dependency

as small as possible.

 List<Task> tasks = taskService.createNativeTaskQuery()

 .sql("SELECT count(*) FROM " +

managementService.getTableName(Task.class) + " T WHERE T.NAME_ =

#{taskName}")

 .parameter("taskNam e", "gonzoTask")

 .list();

 long count = taskService.createNativeTaskQuery()

 .sql("SELECT count(*) FROM " +

managementService.getTableName(Task.class) + " T1, "

 + managementService.getTableName(VariableInstanceEntity.class)

+ " V1 WHERE V1.TASK_ID_ = T1.ID_")

 .count();

Expressions

Activiti uses UEL for expression-resolving. UEL stands for Unified Expression Language and is part of the EE6

specification (see the EE6 specification for detailed information). To support all features of latest UEL spec on ALL

environments, we use a modified version of JUEL.

Expressions can be used in for example Java Service tasks, Execution Listeners, Task Listeners and Conditional

sequence flows. Although there are 2 types of expressions, value-expression and method-expression, Activiti

abstracts this so they can both be used where an expression is needed.

¶ Value expression: resolves to a value. By default, all process variables are available to use. Also all spring-

beans (if using Spring) are available to use in expressions. Some examples:

¶ ${myVar}

${myBean.myProperty}

¶ Method expression: invokes a method, with or without parameters. When invoking a method without

parameters, be sure to add empty parentheses after the method-name (as this distinguishes the

expression from a value expression). The passed parameters can be literal values or expressions that

are resolved themselves. Examples:

¶ ${printer.print()}

¶ ${myBean.addNewOrder('orderName')}

¶ ${myBean.doSomething(myVar, execution)}

Note that these expressions support resolving primitives (incl. comparing them), beans, lists, arrays and maps.

On top of all process variables, there are a few default objects available to be used in expressions:

¶ execution : The DelegateExecution that holds additional information about the ongoing execution.

¶ task : The DelegateTask that holds additional information about the current Task. Note: Only works in

expressions evaluated from task listeners.

http://docs.oracle.com/javaee/6/tutorial/doc/gjddd.html

¶ authenticatedUserId : The id of the user that is currently authenticated. If no user is authenticated,

the variable is not available.

For more concrete usage and examples, check out Expressions in Spring, Java Service tasks, Execution Listeners,

Task Listeners or Conditional sequence flows.

Unit testing

Business processes are an integral part of software projects and they should be tested in the same way normal

application logic is tested: with unit tests. Since Activiti is an embeddable Java engine, writing unit tests for business

processes is as simple as writing regular unit tests.

Activiti supports both JUnit versions 3 and 4 styles of unit testing. In the JUnit 3 style, the

org.activiti. engine.test.ActivitiTestCase must be extended. This will make the ProcessEngine

and the services available through protected member fields. In the setup() of the test, the processEngine will be

initialized by default with the activiti.cfg.xml resource on the classpath. To specify a different configuration

file, override the getConfigurationResource() method. Process engines are cached statically over multiple unit tests

when the configuration resource is the same.

By extending ActivitiTestCase , you can annotate test methods with

org.activiti.engine.test.Deployment . Before the test is run, a resource file of the form

testClassName.testMethod.bpmn20.xml in the same package as the test class, will be deployed. At the

end of the test, the deployment will be deleted, including all related process instances, tasks, etc. The Deployment

annotation also supports setting the resource location explicitly. See the Javadocs for more details.

Taking all that in account, a JUnit 3 style test looks as follows.

public class MyBusinessProcessTest extends ActivitiTestCase {

 @Deployment

 public void testSimpleProcess() {

 runtimeService.startProcessInstanceByKey("simpleProcess");

 Task task = taskService.createTaskQuery().singleResult();

 assertEquals("My Task", task.getName());

 taskService.complete(task.getId());

 assertEquals(0, runtimeService.createProcessInstanceQuery().count());

 }

../javadocs/org/activiti/engine/test/Deployment.html

}

To get the same functionality when using the JUnit 4 style of writing unit tests, the

org.activiti.engine.test.ActivitiRule Rule must be used. Through this rule, the process engine

and services are available through getters. As with the ActivitiTestCase (see above), including this Rule will

enable the use of the org.activiti.engine.test.Deployment annotation (see above for an explanation

of its use and configuration) and it will look for the default configuration file on the classpath. Process engines are

statically cached over multiple unit tests when using the same configuration resource.

The following code snippet shows an example of using the JUnit 4 style of testing and the usage of the

ActivitiRule .

public class MyBusinessProcessTest {

 @Rule

 public Activit iRule activitiRule = new ActivitiRule();

 @Test

 @Deployment

 public void ruleUsageExample() {

 RuntimeService runtimeService = activitiRule.getRuntimeService();

 runtimeService.startProcessInstanceByKey("ruleUsage");

 TaskService taskS ervice = activitiRule.getTaskService();

 Task task = taskService.createTaskQuery().singleResult();

 assertEquals("My Task", task.getName());

 taskService.complete(task.getId());

 assertEquals(0, runtimeService.createProcessInstanceQuery().count());

 }

}

Debugging unit tests

When using the in-memory H2 database for unit tests, the following instructions allow to easily inspect the data in the

Activiti database during a debugging session. The screenshots here are taken in Eclipse, but the mechanism should

be similar for other IDEs.

Suppose we have put a breakpoint somewhere in our unit test. In Eclipse this is done by double-clicking in the left

border next to the code:

If we now run the unit test in debug mode (right-click in test class, select 'Run as' and then 'JUnit test'), the test

execution halts at our breakpoint, where we can now inspect the variables of our test as shown in the right upper

panel.

To inspect the Activiti data, open up the 'Display' window (if this window isn't there, open Window->Show View-

>Other and select Display.) and type (code completion is available)

org.h2.tools.Server.createWeb Server(" - web").start()

Select the line you've just typed and right-click on it. Now select 'Display' (or execute the shortcut instead of right-

clicking)

Now open up a browser and go to http://localhost:8082, and fill in the JDBC URL to the in-memory database (by

default this is jdbc:h2:mem:activiti), and hit the connect button.

You can now see the Activiti data and use it to understand how and why your unit test is executing your process in a

certain way.

http://localhost:8082/

The process engine in a web application

The ProcessEngine is a thread-safe class and can easily be shared among multiple threads. In a web

application, this means it is possible to create the process engine once when the container boots and shut down the

engine when the container goes down.

The following code snippet shows how you can write a simple ServletContextListener to initialize and

destroy process engines in a plain Servlet environment:

public class ProcessEnginesServletContextListener implements

ServletContextListener {

 public void contextInitiali zed(ServletContextEvent servletContextEvent) {

 ProcessEngines.init();

 }

 public void contextDestroyed(ServletContextEvent servletContextEvent) {

 ProcessEngines.destroy();

 }

}

The contextInitialized method will delegate to ProcessEngines.init() . That will look for

activiti.cfg.xml resource files on the classpath, and create a ProcessEngine for the given configurations

(e.g. multiple jars with a configuration file). If you have multiple such resource files on the classpath, make sure they

all have different names. When the process engine is needed, it can be fetched using

ProcessEngines.getDefaultProcessEngine()

or

ProcessEngines.getProcessEngine("myName");

Of course, it is also possible to use any of the variants of creating a process engine, as described in the configuration

section.

The contextDestroyed method of the context-listener delegates to ProcessEngines.destroy() . That

will properly close all initialized process engines.

Chapter 5. Spring integration

Table of Contents

ProcessEngineFactoryBean

Transactions

Expressions

Automatic resource deployment

Unit testing

Annotation-based configuration

JPA with Hibernate 4.2.x

While you can definitely use Activiti without Spring, we've provided some very nice integration features that are

explained in this chapter.

ProcessEngineFactoryBean

The ProcessEngine can be configured as a regular Spring bean. The starting point of the integration is the class

org.activiti.spring.ProcessEngineFactoryBean . That bean takes a process engine configuration

and creates the process engine. This means that the creation and configuration of properties for Spring is the same

as documented in the configuration section. For Spring integration the configuration and engine beans will look like

this:

<bean id="processEngineConfiguration"

class="org.activiti.spring.SpringProcessEngineConf iguration">

 ...

</bean>

<bean id="processEngine"

class="org.activiti.spring.ProcessEngineFactoryBean">

 <property name="processEngineConfiguration"

ref="processEngineConfiguration" />

</bean>

Note that the processEngineConfiguration bean now uses the

org.activiti.spring.SpringProcessEngineConfiguration class.

Transactions

We'll explain the SpringTransactionIntegrationTest found in the Spring examples of the distribution

step by step. Below is the Spring configuration file that we use in this example (you can find it in

SpringTransactionIntegrationTest-context.xml). The section shown below contains the dataSource,

transactionManager, processEngine and the Activiti Engine services.

When passing the DataSource to the SpringProcessEngineConfiguration (using property "dataSource"),

Activiti uses a org.springframework.jdbc.datasource.TransactionAwareDataSourceProxy

internally, which wraps the passed DataSource. This is done to make sure the SQL connections retrieved from the

DataSource and the Spring transactions play well together. This implies that it's no longer needed to proxy the

dataSource yourself in Spring configuration, although it's still allowed to pass a

TransactionAwareDataSourceProxy into the SpringProcessEng ineConfiguration . In this case

no additional wrapping will occur.

Make sure when declaring a TransactionAwareDataSourceProxy in Spring configuration yourself,

that you don't use it for resources that are already aware of Spring-transactions (e.g.

DataSourceTransactionManager and JPATransactionManager need the un-proxied dataSource).

<beans xmlns="http://www.springframework.org /schema/beans"

 xmlns:context="http://www.springframework.org/schema/context"

 xmlns:tx="http://www.springframework.org/schema/tx"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema - instance"

 xsi:schemaLocation="http://www.springframewo rk.org/schema/beans

http://www.springframework.org/schema/beans/spring - beans.xsd

 http://www.springframework.org/schema/context

http://www.springframework.org/schema/context/spring - context - 2.5.xsd

 http ://www.springframework.org/schema/tx

http://www.springframework.org/schema/tx/spring - tx - 3.0.xsd">

 <bean id="dataSource"

class="org.springframework.jdbc.datasource.SimpleDriverDataSource">

 <property name="driverClass" value="org.h2.Driver" />

 <property name="url" value="jdbc:h2:mem:activiti;DB_CLOSE_DELAY=1000" />

 <property name="username" value="sa" />

 <property name="password" value="" />

 </bean>

 <bean id="transactionManager"

class="org.springframework.jdbc.datasource.DataSourc eTransactionManager">

 <property name="dataSource" ref="dataSource" />

 </bean>

 <bean id="processEngineConfiguration"

class="org.activiti.spring.SpringProcessEngineConfiguration">

 <property name="dataSource" ref="dataSource" />

 <property name="transactionManager" ref="transactionManager" />

 <property name="databaseSchemaUpdate" value="true" />

 <property name="jobExecutorActivate" value="false" />

 </bean>

 <bean id="processEngine"

class="org.activiti.spring.ProcessEng ineFactoryBean">

 <property name="processEngineConfiguration"

ref="processEngineConfiguration" />

 </bean>

 <bean id="repositoryService" factory - bean="processEngine" factory -

method="getRepositoryService" />

 <bean id="runtimeService" factory - bean= "processEngine" factory -

method="getRuntimeService" />

 <bean id="taskService" factory - bean="processEngine" factory -

method="getTaskService" />

 <bean id="historyService" factory - bean="processEngine" factory -

method="getHistoryService" />

 <bean id="manage mentService" factory - bean="processEngine" factory -

method="getManagementService" />

...

The remainder of that Spring configuration file contains the beans and configuration that we'll use in this particular

example:

<beans>

 ...

 <tx:annotation - driven transaction - manager="transactionManager"/>

 <bean id="userBean" class="org.activiti.spring.test.UserBean">

 <property name="runtimeService" ref="runtimeService" />

 </bean>

 <bean id="printer" class="org.activiti.spring.test.Printer" />

</beans>

First the application context is created with any of the Spring ways to do that. In this example you could use a

classpath XML resource to configure our Spring application context:

ClassPathXmlApplicationContext applicationContext =

 new

ClassPathXmlA pplicationContext("org/activiti/examples/spring/SpringTransactio

nIntegrationTest - context.xml");

or, since it is a test:

@ContextConfiguration("classpath:org/activiti/spring/test/transaction/SpringT

ransactionIntegrationTest - context.xml")

Then we can get the service beans and invoke methods on them. The ProcessEngineFactoryBean will have added

an extra interceptor to the services that applies Propagation.REQUIRED transaction semantics on the Activiti service

methods. So, for example, we can use the repositoryService to deploy a process like this:

RepositoryService repositoryService = (RepositoryService)

applicationContext.getBean("repositoryService");

String deploymentId = repositoryService

 .createDeployment()

 .addClasspathResource("org/activiti/spring/t est/hello.bpmn20.xml")

 .deploy()

 .getId();

The other way around also works. In this case, the Spring transaction will be around the userBean.hello() method and

the Activiti service method invocation will join that same transaction.

UserBean userB ean = (UserBean) applicationContext.getBean("userBean");

userBean.hello();

The UserBean looks like this. Remember from above in the Spring bean configuration we injected the

repositoryService into the userBean.

public class UserBean {

 /** injected by Spring */

 private RuntimeService runtimeService;

 @Transactional

 public void hello() {

 // here you can do transactional stuff in your domain model

 // and it will be combined in the same transaction as

 // the startProcessI nstanceByKey to the Activiti RuntimeService

 runtimeService.startProcessInstanceByKey("helloProcess");

 }

 public void setRuntimeService(RuntimeService runtimeService) {

 this.runtimeService = runtimeService;

 }

}

Expressions

When using the ProcessEngineFactoryBean, by default, all expressions in the BPMN processes will also 'see' all the

Spring beans. It's possible to limit the beans you want to expose in expressions or even exposing no beans at all

using a map that you can configure. The example below exposes a single bean (printer), available to use under the

key "printer". To have NO beans exposed at all, just pass an empty list as 'beans' property on the

SpringProcessEngineConfiguration. When no 'beans' property is set, all Spring beans in the context will be

available.

<bean id="processEngineConfiguration"

class="org.activiti.spring.SpringProcessEngineConfiguration">

 ...

 <property name="beans">

 <map>

 <entry key="printer" v alue - ref="printer" />

 </map>

 </property>

</bean>

 <bean id="printer" class="org.activiti.examples.spring.Printer" />

Now the exposed beans can be used in expressions: for example, the SpringTransactionIntegrationTest

hello.bpmn20.xml shows how a method on a Spring bean can be invoked using a UEL method expression:

<definitions id="definitions" ...>

 <process id="helloProcess">

 <startEvent id="start" />

 <sequenceFlow id="flow1" sourceRef="start" targetRef="print" />

 <serviceTask id="print" activiti:expression="#{printer.printMessage()}"

/>

 <sequenceFlow id="flow2" sourceRef="print" targetRef="end" />

 <endEvent id="end" />

 </process>

</definitions>

Where Printer looks like this:

public class P rinter {

 public void printMessage() {

 System.out.println("hello world");

 }

}

And the Spring bean configuration (also shown above) looks like this:

<beans ...>

 ...

 <bean id="printer" class="org.activiti.examples.spring.Printer" />

</beans>

Automatic resource deployment

Spring integration also has a special feature for deploying resources. In the process engine configuration, you can

specify a set of resources. When the process engine is created, all those resources will be scanned and deployed.

There is filtering in place that prevents duplicate deployments. Only when the resources actually have changed, will

new deployments be deployed to the Activiti DB. This makes sense in a lot of use case, where the Spring container is

rebooted often (e.g. testing).

Here's an example:

<bean id="processEngineConfiguration"

class="org.activiti.spring.SpringProcessEngineConfiguration">

 ...

 <property name="deploymentResources"

value="classpath*:/org/activiti/spring/test/autodeployment/autodeploy.*.bpmn2

0.xml" />

</bean>

<bean id="processEngine"

class="org.activiti.spring.ProcessEngineFactoryBean">

 <property name="processEngineConfiguration"

ref="processEngineConfiguration" />

</bean>

By default, the configuration above will group all of the resources matching the filtering into a single deployment to the

Activiti engine. The duplicate filtering to prevent re-deployment of unchanged resources applies to the whole

deployment. In some cases, this may not be what you want. For instance, if you deploy a set of process resources

this way and only a single process definition in those resources has changed, the deployment as a whole will be

considered new and all of the process definitions in that deployment will be re-deployed, resulting in new versions of

each of the process definitions, even though only one was actually changed.

To be able to customize the way deployments are determined, you can specify an additional property in the

SpringPr ocessEngineConfiguration , deploymentMode . This property defines the way deployments

will be determined from the set of resources that match the filter. There are 3 values that are supported by default for

this property:

¶ default : Group all resources into a single deployment and apply duplicate filtering to that deployment.

This is the default value and it will be used if you don't specify a value.

¶ single - resource : Create a separate deployment for each individual resource and apply duplicate

filtering to that deployment. This is the value you would use to have each process definition be deployed

separately and only create a new process definition version if it has changed.

¶ resource - parent - folder : Create a separate deployment for resources that share the same parent

folder and apply duplicate filtering to that deployment. This value can be used to create separate

deployments for most resources, but still be able to group some by placing them in a shared folder.

Here's an example of how to specify the single - resource configuration for deploymentMode :

<bean id="processEngineConfiguration"

class="org.activiti.spring.SpringProcessEngineConfiguration">

 ...

 <property name="deploymentResources" value="classpath*:/activiti/*.bpmn" />

 <property name="deploymen tMode" value="single - resource" />

</bean>

In addition to using the values listed above for deploymentMode , you may require customized behavior towards

determining deployments. If so, you can create a subclass of SpringProcessEngineConfiguration and

override the getAutoDeploymentStrategy(String deploymentMode) method. This method

determines which deployment strategy is used for a certain value of the deploymentMode configuration.

Unit testing

When integrating with Spring, business processes can be tested very easily using the standard Activiti testing

facilities. The following example shows how a business process is tested in a typical Spring-based unit test:

@RunWith(SpringJUnit4ClassRunner .class)

@ContextConfiguration("classpath:org/activiti/spring/test/junit4/springTypica

lUsageTest - context.xml")

public class MyBusinessProcessTest {

 @Autowired

 private RuntimeService runtimeService;

 @Autowired

 private TaskService taskService;

 @Autowired

 @Rule

 public ActivitiRule activitiSpringRule;

 @Test

 @Deployment

 public void simpleProcessTest() {

 runtimeService.startProcessInstanceByKey("simpleProcess");

 Task task = taskService.createTaskQuery().singleResult();

 assertEquals("My Task", task.getName());

 taskService.complete(task.getId());

 assertEquals(0, runtimeService.createProcessInstanceQuery().count());

 }

}

Note that for this to work, you need to define a org.activiti.engine.test.ActivitiRule bean in the Spring configuration

(which is injected by auto-wiring in the example above).

<bean id="activitiRule" class="org.activiti.engine.test.ActivitiRule">

 <property name="processEngine" ref="processEngine" />

</bean>

Annotation-based configuration

[EXPERIMENTAL] The @EnableActiviti annotation is relatively new and could potentially change in the future.

An alternative to XML-based configuration is using the annotation-based way of configuring a Spring environment.

This is pretty much similar to doing it the XML-way, except that the @Bean annotation is used and the configuration

is written in Java. This has been always possible out-of-the-box with the Activiti-Spring integration.

Building on top of that (available for Spring 3.0+) is the @EnableActiviti annotation. In the simplest form it looks like

this:

 @Configuration

 @EnableActiviti

 public static class SimplestConfiguration {

 }

This will create a Spring environment with an Activiti Process Engine configured using

¶ a default in-memory H2 database, with auto-schema upgrade enabled.

¶ a simple DataSourceTransactionManager

¶ a default SpringJobExecutor

¶ a scanner for bpmn20.xml files residing in the processes/ folder.

In such an environment, getting access to the Activiti Engine and services is simply done by injection:

 @Autowired

 private ProcessEngine processEngine;

 @Autowired

 private RuntimeService runtimeService;

 @Autowired

 private TaskService taskService;

 @Autowired

 private HistoryService historyService;

 @Autowired

 private RepositoryService repositoryService;

 @Autowired

 private ManagementService managementService;

 @Autowired

 private FormService formService;

Of course, these defaults can be customized. For example, if a datasource is configured, that datasource will be used

instead of creating the default one. The same applies for the transaction manager, job executor, etc. For example in

this piece of configuration:

 @Configuration

 @EnableActi viti

 public static class Config {

 @Bean

 public DataSource dataSource() {

 BasicDataSource basicDataSource = new BasicDataSource();

 basicDataSource.setUsername("sa");

 basicDataSource.setUrl("jdbc:h2:mem:anotherDatabase");

 basicDataSource.setDefaultAutoCommit(false);

 basicDataSource.setDriverClassName(org.h2.Driver.class.getName());

 basicDataSource.setPassword("");

 return basicDataSource;

 }

 }

Another database will be used instead of constructing the default one.

A more elaborate configuration for reference is shown below. Note the use of an AbstractActivitiConfigurer, which

exposes access to the Process Engine configuration and can be used to tweak the configuration in detail.

@Configuration

@EnableActiviti

@EnableTransactionManagement(proxyTargetClass = true)

class JPAConfiguration {

 @Bean

 public OpenJpaVendorAdapter openJpaVendorAdapter() {

 OpenJpaVendorAdapt er openJpaVendorAdapter = new

OpenJpaVendorAdapter();

openJpaVendorAdapter.setDatabasePlatform(H2Dictionary.class.getName());

 return openJpaVendorAdapter;

 }

 @Bean

 public DataSource dataSource() {

 BasicDataSource basicDataSource = new BasicDataSource();

 basicDataSource.setUsername("sa");

 basicDataSource.setUrl("jdbc:h2:mem:activiti");

 basicDataSource.setDefaultAutoCommit(false);

 basicDataSource.setDriverClassName(org. h2.Driver.class.getName());

 basicDataSource.setPassword("");

 return basicDataSource;

 }

 @Bean

 public LocalContainerEntityManagerFactoryBean entityManagerFactoryBean(

 OpenJpaVendorAdapter openJpaVendorAdapter, DataSource ds) {

 LocalContainerEntityManagerFactoryBean emf = new

LocalContainerEntityManagerFactoryBean();

emf.setPersistenceXmlLocation("classpath:/org/activiti/spring/test/jpa/custom

- persistence.xml");

 emf.setJpaVendorAdapter(openJpaVendorA dapter);

 emf.setDataSource(ds);

 return emf;

 }

 @Bean

 public PlatformTransactionManager jpaTransactionManager(

 EntityManagerFactory entityManagerFactory) {

 return new JpaTransactionManager(entityManagerFactory);

 }

 @Bean

 public AbstractActivitiConfigurer abstractActivitiConfigurer(

 final EntityManagerFactory emf,

 final PlatformTransactionManager transactionManager) {

 return new AbstractActivitiConfigurer() {

 @Overri de

 public void

postProcessSpringProcessEngineConfiguration(SpringProcessEngineConfiguration

engine) {

 engine.setTransactionManager(transactionManager);

 engine.setJpaEntityManagerFactory(emf);

 engi ne.setJpaHandleTransaction(false);

 engine.setJobExecutorActivate(false);

 engine.setJpaCloseEntityManager(false);

engine.setDatabaseSchemaUpdate(ProcessEngineConfiguration.DB_SCHEMA_UPDATE_TR

UE);

 }

 };

 }

 // A random bean

 @Bean

 public LoanRequestBean loanRequestBean() {

 return new LoanRequestBean();

 }

}

JPA with Hibernate 4.2.x

When using Hibernate 4.2.x JPA in service task or listener logic in the Activiti Engine an additional dependency to

Spring ORM is needed. This is not needed for Hibernate 4.1.x or lower. The following dependency should be added:

<dependency>

 <groupId>o rg.springframework</groupId>

 <artifactId>spring - orm</artifactId>

 <version>${org.springframework.version}</version>

</dependency>

Chapter 6. Deployment

Table of Contents

Business archives

Deploying programmatically

Deploying with Activiti Explorer

External resources

Java classes

Using Spring beans from a process

Creating a single app

Versioning of process definitions

Providing a process diagram

Generating a process diagram

Category

Business archives

To deploy processes, they have to be wrapped in a business archive. A business archive is the unit of deployment to

an Activiti Engine. A business archive is equivalent to a zip file. It can contain BPMN 2.0 processes, task forms, rules

and any other type of file. In general, a business archive contains a collection of named resources.

When a business archive is deployed, it is scanned for BPMN files with a .bpmn20.xml or .bpmn extension. Each

of those will be parsed and may contain multiple process definitions.

Note

Java classes present in the business archive will not be added to the classpath. All custom

classes used in process definitions in the business archive (for example Java service tasks or

event listener implementations) should be present on the activiti-engine's classpath in order to run

the processes.

Deploying programmatically

Deploying a business archive from a zip file can be done like this:

String barFileName = "path/to/process - one.bar";

ZipInputStream inputStream = new ZipInputStream(new

FileInputStream(barFileName));

repositoryService.createDeployment()

 .name("process - one.bar")

 .addZipInputStream(inputStream)

 .deploy();

It's also possible to build a deployment from individual resources. See the javadocs for more details.

Deploying with Activiti Explorer

The Activiti Explorer webapp allows uploading bar files (and single bpmn20.xml files) through the webapp user

interface. Choose the Management tab and click on Deployment:

A popup window now allows you to select a file from your computer, or you can simply drag and drop to the

designated area (if your browser supports it).

External resources

Process definitions live in the Activiti database. These process definitions can reference delegation classes when

using Service Tasks or execution listeners or Spring beans from the Activiti configuration file. These classes and the

Spring configuration file have to be available to all process engines that may execute the process definitions.

Java classes

All custom classes that are used in your process (e.g. JavaDelegates used in Service Tasks or event-listeners,

TaskListeners, ...) should be present on the engine's classpath when an instance of the process is started.

During deployment of a business archive however, those classes don't have to be present on the classpath. This

means that your delegation classes don't have to be on the classpath when deploying a new business archive with

Ant.

When you are using the demo setup and you want to add your custom classes, you should add a jar containing your

classes to the activiti-explorer or activiti-rest webapp lib. Don't forget to include the dependencies of your custom

classes (if any) as well. Alternatively, you can include your dependencies in the libraries directory of your Tomcat

installation, ${tomcat. home}/lib .

Using Spring beans from a process

When expressions or scripts use Spring beans, those beans have to be available to the engine when executing the

process definition. If you are building your own webapp and you configure your process engine in your context as

described in the spring integration section, that is straightforward. But bear in mind that you also should update the

Activiti rest webapp with that context if you use it. You can do that by replacing the activiti.cfg.xml in the

activiti - rest/lib/activiti - cfg.jar JAR file with an activiti - context.xml file containing

your Spring context configuration.

Creating a single app

Instead of making sure that all process engines have all the delegation classes on their classpath and use the right

Spring configuration, you may consider including the Activiti rest webapp inside your own webapp so that there is

only a single ProcessEngine .

Versioning of process definitions

BPMN doesn't have a notion of versioning. That is actually good because the executable BPMN process file will

probably live in a version control system repository (e.g. Subversion, Git or Mercurial) as part of your development

project. Versions of process definitions are created during deployment. During deployment, Activiti will assign a

version to the ProcessDefinition before it is stored in the Activiti DB.

For each process definition in a business archive the following steps are performed to initialize the properties key ,

version , name and id :

¶ The process definition id attribute in the XML file is used as the process definition key property.

¶ The process definition name attribute in the XML file is used as the process definition name property. If the

name attribute is not specified, then id attribute is used as the name.

¶ The first time a process with a particular key is deployed, version 1 is assigned. For all subsequent

deployments of process definitions with the same key, the version will be set 1 higher then the maximum

currently deployed version. The key property is used to distinguish process definitions.

¶ The id property is set to {processDefinitionKey}:{processDefinitionVersion}:{generated-id}, where

generated - id is a unique number added to guarantee uniqueness of the process id for the process

definition caches in a clustered environment.

Take for example the following process

<definitions id="myDefinitions" >

 <process id="myProcess" name="My important process" >

 ...

When deploying this process definition, the process definition in the database will look like this:

Table 6.1.

id key name version

myProcess:1:676 myProcess My important process 1

Suppose we now deploy an updated version of the same process (e.g. changing some user tasks), but the id of the

process definition remains the same. The process definition table will now contain the following entries:

Table 6.2.

id key name version

myProcess:1:676 myProcess My important process 1

myProcess:2:870 myProcess My important process 2

When the runtimeService.startProcessInstanceByKey("myProcess") is called, it will now use

the process definition with version 2, as this is the latest version of the process definition.

Should we create a second process, as defined below and deploy this to Activiti, a third row will be added to the

table.

<definitions id="myNewDefinitions" >

 <process id="myNewProcess" name="My important proce ss" >

 ...

The table will look like this:

Table 6.3.

id key name version

myProcess:1:676 myProcess My important process 1

myProcess:2:870 myProcess My important process 2

myNewProcess:1:1033 myNewProcess My important process 1

Note how the key for the new process is different from our first process. Even though the name is the same (we

should probably have changed that too), Activiti only considers the id attribute when distinguishing processes. The

new process is therefore deployed with version 1.

Providing a process diagram

A process diagram image can be added to a deployment. This image will be stored in the Activiti repository and is

accessible through the API. This image is also used to visualize the process in Activiti Explorer.

Suppose we have a process on our classpath, org/activiti/expenseProcess.bpmn20.xml that has a

process key 'expense'. The following naming conventions for the process diagram image apply (in this specific order):

¶ If an image resource exists in the deployment that has a name of the BPMN 2.0 XML file name

concatenated with the process key and an image suffix, this image is used. In our example, this would be

org/activiti/expenseProcess.expense.png (or .jpg/gif). In case you have multiple images

defined in one BPMN 2.0 XML file, this approach makes most sense. Each diagram image will then have the

process key in its file name.

¶ If no such image exists, am image resource in the deployment matching the name of the BPMN 2.0 XML file

is searched for. In our example this would be org/activiti/expenseProcess.png . Note that this

means that every process definition defined in the same BPMN 2.0 file has the same process diagram

image. In case there is only one process definition in each BPMN 2.0 XML file, this is obviously not a

problem.

Example when deploying programmatically:

repositoryService.createDeployment()

 .name("expense - process.bar")

 .addClasspathResource("org/activiti/expenseProcess.bpmn20.xml")

 .addClassp athResource("org/activiti/expenseProcess.png")

 .deploy();

The image resource can be retrieved through the API afterwards:

 ProcessDefinition processDefinition =

repositoryService.createProcessDefinitionQuery()

.processDefinitionKey("expense")

 .singleResult();

 String diagramResourceName = processDefinition.getDiagramResourceName();

 InputStream imageStream =

repositoryService.getResour ceAsStream(processDefinition.getDeploymentId(),

diagramResourceName);

Generating a process diagram

In case no image is provided in the deployment, as described in the previous section, the Activiti engine will generate

a diagram image if the process definition contains the necessary 'diagram interchange' information.

The resource can be retrieved in exactly the same way as when an image is provided in the deployment.

If, for some reason, it is not necessary or wanted to generate a diagram during deployment the

isCreateDiagramOnDeploy property can be set on the process engine configuration:

<property name="createDiagramOnDeploy" value="false" />

No diagram will be generated now.

Category

Both deployments and process definitions have user defined categories. The process definition category is initialized

value in attribute in the BPMN file: <definitions ... targetNamespace="yourCategory" ...

The deployment category can be specified in the API like this:

repositoryService

 .createDeployment()

 .category("yourCategory")

 ...

 .deploy();

Chapter 7. BPMN 2.0 Introduction

Table of Contents

What is BPMN?

Defining a process

Getting started: 10 minute tutorial

Prerequisites

Goal

Use case

Process diagram

XML representation

Starting a process instance

Task lists

Claiming the task

Completing the task

Ending the process

Code overview

Future enhancements

What is BPMN?

See our FAQ entry on BPMN 2.0.

http://activiti.org/faq.html#WhatIsBpmn20

Defining a process

Note

This introduction is written under the assumption you are using the Eclipse IDE to create and edit

files. Very little of this is specific to Eclipse, however. You can use any other tool you prefer to

create XML files containing BPMN 2.0.

Create a new XML file (right-click on any project and select New->Other->XML-XML File) and give it a name. Make

sure that the file ends with .bpmn20.xml or .bpmn, since otherwise the engine won't pick up this file for deployment.

The root element of the BPMN 2.0 schema is the definitions element. Within this element, multiple process

definitions can be defined (although we advise to have only one process definition in each file, since this simplifies

maintenance later in the development process). An empty process definition looks as listed below. Note that the

minimal definitions element only needs the xmlns and targetNamespace declaration. The

targetNamespace can be anything, and is useful for categorizing process definitions.

http://eclipse.org/

<definitions

 xmlns="http://www.omg.org/spec/BPMN/20100524/MODEL"

 xmlns:activiti="http://activiti.org/bpmn"

 targetNamespace="Examples">

 <process id="myProcess" name="My First Process">

 ..

 </process>

</definitions>

Optionally you can also add the online schema location of the BPMN 2.0 XML schema, as an alternative to the XML

catalog configuration in Eclipse.

xmlns:xsi="http://www.w3.org/2001/XMLSchema - instance"

xsi:schemaLocation="http://w ww.omg.org/spec/BPMN/20100524/MODEL

 http://www.omg.org/spec/BPMN/2.0/20100501/BPMN20.xsd

The process element has two attributes:

¶ id: this attribute is required and maps to the key property of an Activiti ProcessDefinition object.

This id can then be used to start a new process instance of the process definition, through the

startProcessInstanceByKey method on the RuntimeService . This method will always take the

latest deployed version of the process definition.

ProcessInstance process Instance =

runtimeService.startProcessInstanceByKey("myProcess");

Important to note here is that this is not the same as calling the startProcessInstanceById method.

This method expects the String id that was generated at deploy time by the Activiti engine, and can be

retrieved by calling the processDefinition.getId() method. The format of the generated id is

'key:version', and the length is constrained to 64 characters. If you get an ActivitiException

stating that the generated id is too long, limit the text in the key field of the process.

¶ name: this attribute is optional and maps to the name property of a ProcessDefinition . The engine

itself doesn't use this property, so it can be used for displaying a more human-friendly name in a user

interface, for example.

Getting started: 10 minute tutorial

In this section we will cover a (very simple) business process that we will use to introduce some basic Activiti

concepts and the Activiti API.

Prerequisites

This tutorial assumes that you have the Activiti demo setup running, and that you are using a standalone H2 server.

Edit db.properties and set the jdbc.url=jdbc:h2:tcp://localhost/activiti , and then run the

standalone server according to H2's documentation.

Goal

The goal of this tutorial is to learn about Activiti and some basic BPMN 2.0 concepts. The end result will be a simple

Java SE program that deploys a process definition, and interacts with this process through the Activiti engine API.

We'll also touch some of the tooling around Activiti. Of course, what you'll learn in this tutorial can also be used when

building your own web applications around your business processes.

Use case

The use case is straightforward: we have a company, let's call it BPMCorp. In BPMCorp, a financial report needs to

be written every month for the company shareholders. This is the responsibility of the accountancy department. When

the report is finished, one of the members of the upper management needs to approve the document before it is sent

to all the shareholders.

Process diagram

The business process as described above can be graphically visualized using the Activiti Designer. However, for this

tutorial we'll type the XML ourselves, as we learn the most this way at this point. The graphical BPMN 2.0 notation of

our process looks like this:

http://www.h2database.com/html/tutorial.html#using_server

What we see is a none Start Event (circle on the left), followed by two User Tasks: 'Write monthly financial report' and

'Verify monthly financial report', ending in a none end event (circle with thick border on the right).

XML representation

The XML version of this business process (FinancialReportProcess.bpmn20.xml) looks as shown below. It's easy to

recognize the main elements of our process (click on the links for going to the detailed section of that BPMN 2.0

construct):

¶ The (none) start event learns us what the entry point to the process is.

¶ The User Tasks declarations are the representation of the human tasks of our process. Note that the first

task is assigned to the accountancy group, while the second task is assigned to the management group.

See the section on user task assignment for more information on how users and groups can be assigned to

user tasks.

¶ The process ends when the none end event is reached.

¶ The elements are connected with each other through sequence flows. These sequence flow have a

source and target , defining the direction of the sequence flow.

<definitions id="definitions"

 targetNamespace="http://activiti.org/bpmn20"

 xmlns:activiti="http://activiti.org/bpmn"

 xmlns="http://www.omg.org/spec/BPMN/20100524/MODEL">

 <process id="financialReport" name="Monthly financial report reminder

process">

 <startEvent id="theStart" />

 <sequenceFlow id='flow1' sourceRef='theStart'

targetRef='writeReportTask' />

 <userTask id="writeReportTask" name="Write mon thly financial report"

>

 <documentation>

 Write monthly financial report for publication to shareholders.

 </documentation>

 <potentialOwner>

 <resourceAssignmentExpression>

 <formalExpression>accountancy</formalExpression>

 </resourceAssignmentExpression>

 </potentialOwner>

 </userTask>

 <sequenceFlow id='flow2' sourceRef='writeReportTask'

targetRef='verifyReportTask' />

 <userTask id="verifyReportTask" name="Verify monthly financial

report" >

 <documentation>

 Verify monthly financial report composed by the accountancy

department.

 This financial report is going to be sent to all the company

shareholders.

 </documentation>

 <potentialOwner>

 <resourceAssignmentEx pression>

 <formalExpression>management</formalExpression>

 </resourceAssignmentExpression>

 </potentialOwner>

 </userTask>

 <sequenceFlow id='flow3' sourceRef='verifyReportTask'

targetRef='theEnd' />

 <endEvent id="th eEnd" />

 </process>

</definitions>

Starting a process instance

We have now created the process definition of our business process. From such a process definition, we can

create process instances. In this case, one process instance would match with the creation and verification of a

single financial report for a particular month. All the process instances share the same process definition.

To be able to create process instances from a given process definition, we must first deploy this process definition.

Deploying a process definition means two things:

¶ The process definition will be stored in the persistent datastore that is configured for your Activiti engine. So

by deploying our business process, we make sure that the engine will find the process definition after an

engine reboot.

¶ The BPMN 2.0 process file will be parsed to an in-memory object model that can be manipulated through

the Activiti API.

More information on deployment can be found in the dedicated section on deployment.

As described in that section, deployment can happen in several ways. One way is through the API as follows. Note

that all interaction with the Activiti engine happens through its services.

Deployment deployment = repositoryService.createDeployment()

 .addClasspathResource("FinancialReportProcess.bpmn20.xml")

 .deploy();

Now we can start a new process instance using the id we defined in the process definition (see process element in

the XML file). Note that this id in Activiti terminology is called the key.

ProcessInstance processInstance =

runtimeService.startProcessInstanceByKey("financialReport");

This will create a process instance that will first go through the start event. After the start event, it follows all the

outgoing sequence flows (only one in this case) and the first task ('write monthly financial report') is reached. The

Activiti engine will now store a task in the persistent database. At this point, the user or group assignments attached

to the task are resolved and also stored in the database. It's important to note that the Activiti engine will continue

process execution steps until it reaches a wait state, such as the user task. At such a wait state, the current state of

the process instance is stored in the database. It remains in that state until a user decides to complete their task. At

that point, the engine will continue until it reaches a new wait state or the end of the process. When the engine

reboots or crashes in the meantime, the state of the process is safe and well in the database.

After the task is created, the startProcessInstanceByKey method will return since the user task activity is a

wait state. In this case, the task is assigned to a group, which means that every member of the group is a candidate

to perform the task.

We can now throw this all together and create a simple Java program. Create a new Eclipse project and add the

Activiti jars and dependencies to its classpath (these can be found in the libs folder of the Activiti distribution). Before

we can call the Activiti services, we must first construct a ProcessEngine that gives us access to the services.

Here we use the 'standalone' configuration, which constructs a ProcessEngine that uses the database also used

in the demo setup.

You can download the process definition XML here. This file contains the XML as shown above, but also contains the

necessary BPMN diagram interchange information to visualize the process in the Activiti tools.

public static void main(String[] args) {

 // Create Activiti pro cess engine

 ProcessEngine processEngine = ProcessEngineConfiguration

 .createStandaloneProcessEngineConfiguration()

 .buildProcessEngine();

 // Get Activiti services

 RepositoryService repositoryService = processEngine.getRepositoryService();

 RuntimeService runtimeService = processEngine.getRuntimeService();

 // Deploy the process definition

 repositoryService.createDeployment()

 .addClasspathResource("FinancialReportProcess.bpmn20.xml")

 .deploy();

 // Start a process instance

 runtimeService.startProcessInstanceByKey("financialReport");

}

Task lists

We can now retrieve this task through the TaskService by adding the following logic:

List<Task> tasks =

taskService.createTaskQuery().taskCandidateUser ("kermit").list();

Note that the user we pass to this operation needs to be a member of the accountancy group, since that was

declared in the process definition:

<potentialOwner>

 <resourceAssignmentExpression>

 <formalExpression> accountancy </formalE xpression>

 </resourceAssignmentExpression>

</potentialOwner>

images/FinancialReportProcess.bpmn20.xml

We could also use the task query API to get the same results using the name of the group. We can now add the

following logic to our code:

TaskService taskService = processEngine.getTaskServic e();

List<Task> tasks =

taskService.createTaskQuery().taskCandidateGroup("accountancy").list();

Since we've configured our ProcessEngine to use the same database as the demo setup is using, we can now

log into Activiti Explorer. By default, no user is in the accountancy group. Login with kermit/kermit, click Groups and

then "Create group". Then click Users and add the group to fozzie. Now login with fozzie/fozzie, and we will find that

we can start our business process after selecting the Processes page and and clicking on the 'Start Process' link in

the 'Actions' column corresponding to the 'Monthly financial report' process.

As explained, the process will execute up to the first user task. Since we're logged in as kermit, we can see that there

is a new candidate task available for him after we've started a process instance. Select the Tasks page to view this

new task. Note that even if the process was started by someone else, the task would still be visible as a candidate

task to everyone in the accountancy group.

http://localhost:8080/activiti-explorer/

Claiming the task

An accountant now needs to claim the task. By claiming the task, the specific user will become the assignee of the

task and the task will disappear from every task list of the other members of the accountancy group. Claiming a task

is programmatically done as follows:

taskService.claim(task.getId(), "fozzie");

The task is now in the personal task list of the one that claimed the task.

List<Tas k> tasks =

taskService.createTaskQuery().taskAssignee("fozzie").list();

In the Activiti Explorer UI, clicking the claim button will call the same operation. The task will now move to the

personal task list of the logged on user. You also see that the assignee of the task changed to the current logged in

user.

